• Math Article

Graphical Representation

Class Registration Banner

Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical representation. Some of them are as follows:

  • Line Graphs – Line graph or the linear graph is used to display the continuous data and it is useful for predicting future events over time.
  • Bar Graphs – Bar Graph is used to display the category of data and it compares the data using solid bars to represent the quantities.
  • Histograms – The graph that uses bars to represent the frequency of numerical data that are organised into intervals. Since all the intervals are equal and continuous, all the bars have the same width.
  • Line Plot – It shows the frequency of data on a given number line. ‘ x ‘ is placed above a number line each time when that data occurs again.
  • Frequency Table – The table shows the number of pieces of data that falls within the given interval.
  • Circle Graph – Also known as the pie chart that shows the relationships of the parts of the whole. The circle is considered with 100% and the categories occupied is represented with that specific percentage like 15%, 56%, etc.
  • Stem and Leaf Plot – In the stem and leaf plot, the data are organised from least value to the greatest value. The digits of the least place values from the leaves and the next place value digit forms the stems.
  • Box and Whisker Plot – The plot diagram summarises the data by dividing into four parts. Box and whisker show the range (spread) and the middle ( median) of the data.

Graphical Representation

General Rules for Graphical Representation of Data

There are certain rules to effectively present the information in the graphical representation. They are:

  • Suitable Title: Make sure that the appropriate title is given to the graph which indicates the subject of the presentation.
  • Measurement Unit: Mention the measurement unit in the graph.
  • Proper Scale: To represent the data in an accurate manner, choose a proper scale.
  • Index: Index the appropriate colours, shades, lines, design in the graphs for better understanding.
  • Data Sources: Include the source of information wherever it is necessary at the bottom of the graph.
  • Keep it Simple: Construct a graph in an easy way that everyone can understand.
  • Neat: Choose the correct size, fonts, colours etc in such a way that the graph should be a visual aid for the presentation of information.

Graphical Representation in Maths

In Mathematics, a graph is defined as a chart with statistical data, which are represented in the form of curves or lines drawn across the coordinate point plotted on its surface. It helps to study the relationship between two variables where it helps to measure the change in the variable amount with respect to another variable within a given interval of time. It helps to study the series distribution and frequency distribution for a given problem.  There are two types of graphs to visually depict the information. They are:

  • Time Series Graphs – Example: Line Graph
  • Frequency Distribution Graphs – Example: Frequency Polygon Graph

Principles of Graphical Representation

Algebraic principles are applied to all types of graphical representation of data. In graphs, it is represented using two lines called coordinate axes. The horizontal axis is denoted as the x-axis and the vertical axis is denoted as the y-axis. The point at which two lines intersect is called an origin ‘O’. Consider x-axis, the distance from the origin to the right side will take a positive value and the distance from the origin to the left side will take a negative value. Similarly, for the y-axis, the points above the origin will take a positive value, and the points below the origin will a negative value.

Principles of graphical representation

Generally, the frequency distribution is represented in four methods, namely

  • Smoothed frequency graph
  • Pie diagram
  • Cumulative or ogive frequency graph
  • Frequency Polygon

Merits of Using Graphs

Some of the merits of using graphs are as follows:

  • The graph is easily understood by everyone without any prior knowledge.
  • It saves time
  • It allows us to relate and compare the data for different time periods
  • It is used in statistics to determine the mean, median and mode for different data, as well as in the interpolation and the extrapolation of data.

Example for Frequency polygonGraph

Here are the steps to follow to find the frequency distribution of a frequency polygon and it is represented in a graphical way.

  • Obtain the frequency distribution and find the midpoints of each class interval.
  • Represent the midpoints along x-axis and frequencies along the y-axis.
  • Plot the points corresponding to the frequency at each midpoint.
  • Join these points, using lines in order.
  • To complete the polygon, join the point at each end immediately to the lower or higher class marks on the x-axis.

Draw the frequency polygon for the following data

10-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90
4 6 8 10 12 14 7 5

Mark the class interval along x-axis and frequencies along the y-axis.

Let assume that class interval 0-10 with frequency zero and 90-100 with frequency zero.

Now calculate the midpoint of the class interval.

0-10 5 0
10-20 15 4
20-30 25 6
30-40 35 8
40-50 45 10
50-60 55 12
60-70 65 14
70-80 75 7
80-90 85 5
90-100 95 0

Using the midpoint and the frequency value from the above table, plot the points A (5, 0), B (15, 4), C (25, 6), D (35, 8), E (45, 10), F (55, 12), G (65, 14), H (75, 7), I (85, 5) and J (95, 0).

To obtain the frequency polygon ABCDEFGHIJ, draw the line segments AB, BC, CD, DE, EF, FG, GH, HI, IJ, and connect all the points.

graphical representation meaning in english

Frequently Asked Questions

What are the different types of graphical representation.

Some of the various types of graphical representation include:

  • Line Graphs
  • Frequency Table
  • Circle Graph, etc.

Read More:  Types of Graphs

What are the Advantages of Graphical Method?

Some of the advantages of graphical representation are:

  • It makes data more easily understandable.
  • It saves time.
  • It makes the comparison of data more efficient.
MATHS Related Links

Leave a Comment Cancel reply

Your Mobile number and Email id will not be published. Required fields are marked *

Request OTP on Voice Call

Post My Comment

graphical representation meaning in english

Very useful for understand the basic concepts in simple and easy way. Its very useful to all students whether they are school students or college sudents

Thanks very much for the information

graphical representation meaning in english

Register with BYJU'S & Download Free PDFs

Register with byju's & watch live videos.

Graphical Representation of Data

Graphical representation of data is an attractive method of showcasing numerical data that help in analyzing and representing quantitative data visually. A graph is a kind of a chart where data are plotted as variables across the coordinate. It became easy to analyze the extent of change of one variable based on the change of other variables. Graphical representation of data is done through different mediums such as lines, plots, diagrams, etc. Let us learn more about this interesting concept of graphical representation of data, the different types, and solve a few examples.

1.
2.
3.
4.
5.
6.
7.

Definition of Graphical Representation of Data

A graphical representation is a visual representation of data statistics-based results using graphs, plots, and charts. This kind of representation is more effective in understanding and comparing data than seen in a tabular form. Graphical representation helps to qualify, sort, and present data in a method that is simple to understand for a larger audience. Graphs enable in studying the cause and effect relationship between two variables through both time series and frequency distribution. The data that is obtained from different surveying is infused into a graphical representation by the use of some symbols, such as lines on a line graph, bars on a bar chart, or slices of a pie chart. This visual representation helps in clarity, comparison, and understanding of numerical data.

Representation of Data

The word data is from the Latin word Datum, which means something given. The numerical figures collected through a survey are called data and can be represented in two forms - tabular form and visual form through graphs. Once the data is collected through constant observations, it is arranged, summarized, and classified to finally represented in the form of a graph. There are two kinds of data - quantitative and qualitative. Quantitative data is more structured, continuous, and discrete with statistical data whereas qualitative is unstructured where the data cannot be analyzed.

Principles of Graphical Representation of Data

The principles of graphical representation are algebraic. In a graph, there are two lines known as Axis or Coordinate axis. These are the X-axis and Y-axis. The horizontal axis is the X-axis and the vertical axis is the Y-axis. They are perpendicular to each other and intersect at O or point of Origin. On the right side of the Origin, the Xaxis has a positive value and on the left side, it has a negative value. In the same way, the upper side of the Origin Y-axis has a positive value where the down one is with a negative value. When -axis and y-axis intersect each other at the origin it divides the plane into four parts which are called Quadrant I, Quadrant II, Quadrant III, Quadrant IV. This form of representation is seen in a frequency distribution that is represented in four methods, namely Histogram, Smoothed frequency graph, Pie diagram or Pie chart, Cumulative or ogive frequency graph, and Frequency Polygon.

Principle of Graphical Representation of Data

Advantages and Disadvantages of Graphical Representation of Data

Listed below are some advantages and disadvantages of using a graphical representation of data:

  • It improves the way of analyzing and learning as the graphical representation makes the data easy to understand.
  • It can be used in almost all fields from mathematics to physics to psychology and so on.
  • It is easy to understand for its visual impacts.
  • It shows the whole and huge data in an instance.
  • It is mainly used in statistics to determine the mean, median, and mode for different data

The main disadvantage of graphical representation of data is that it takes a lot of effort as well as resources to find the most appropriate data and then represent it graphically.

Rules of Graphical Representation of Data

While presenting data graphically, there are certain rules that need to be followed. They are listed below:

  • Suitable Title: The title of the graph should be appropriate that indicate the subject of the presentation.
  • Measurement Unit: The measurement unit in the graph should be mentioned.
  • Proper Scale: A proper scale needs to be chosen to represent the data accurately.
  • Index: For better understanding, index the appropriate colors, shades, lines, designs in the graphs.
  • Data Sources: Data should be included wherever it is necessary at the bottom of the graph.
  • Simple: The construction of a graph should be easily understood.
  • Neat: The graph should be visually neat in terms of size and font to read the data accurately.

Uses of Graphical Representation of Data

The main use of a graphical representation of data is understanding and identifying the trends and patterns of the data. It helps in analyzing large quantities, comparing two or more data, making predictions, and building a firm decision. The visual display of data also helps in avoiding confusion and overlapping of any information. Graphs like line graphs and bar graphs, display two or more data clearly for easy comparison. This is important in communicating our findings to others and our understanding and analysis of the data.

Types of Graphical Representation of Data

Data is represented in different types of graphs such as plots, pies, diagrams, etc. They are as follows,

Data Representation Description

A group of data represented with rectangular bars with lengths proportional to the values is a .

The bars can either be vertically or horizontally plotted.

The is a type of graph in which a circle is divided into Sectors where each sector represents a proportion of the whole. Two main formulas used in pie charts are:

The represents the data in a form of series that is connected with a straight line. These series are called markers.

Data shown in the form of pictures is a . Pictorial symbols for words, objects, or phrases can be represented with different numbers.

The is a type of graph where the diagram consists of rectangles, the area is proportional to the frequency of a variable and the width is equal to the class interval. Here is an example of a histogram.

The table in statistics showcases the data in ascending order along with their corresponding frequencies.

The frequency of the data is often represented by f.

The is a way to represent quantitative data according to frequency ranges or frequency distribution. It is a graph that shows numerical data arranged in order. Each data value is broken into a stem and a leaf.

Scatter diagram or is a way of graphical representation by using Cartesian coordinates of two variables. The plot shows the relationship between two variables.

Related Topics

Listed below are a few interesting topics that are related to the graphical representation of data, take a look.

  • x and y graph
  • Frequency Polygon
  • Cumulative Frequency

Examples on Graphical Representation of Data

Example 1 : A pie chart is divided into 3 parts with the angles measuring as 2x, 8x, and 10x respectively. Find the value of x in degrees.

We know, the sum of all angles in a pie chart would give 360º as result. ⇒ 2x + 8x + 10x = 360º ⇒ 20 x = 360º ⇒ x = 360º/20 ⇒ x = 18º Therefore, the value of x is 18º.

Example 2: Ben is trying to read the plot given below. His teacher has given him stem and leaf plot worksheets. Can you help him answer the questions? i) What is the mode of the plot? ii) What is the mean of the plot? iii) Find the range.

Stem Leaf
1 2 4
2 1 5 8
3 2 4 6
5 0 3 4 4
6 2 5 7
8 3 8 9
9 1

Solution: i) Mode is the number that appears often in the data. Leaf 4 occurs twice on the plot against stem 5.

Hence, mode = 54

ii) The sum of all data values is 12 + 14 + 21 + 25 + 28 + 32 + 34 + 36 + 50 + 53 + 54 + 54 + 62 + 65 + 67 + 83 + 88 + 89 + 91 = 958

To find the mean, we have to divide the sum by the total number of values.

Mean = Sum of all data values ÷ 19 = 958 ÷ 19 = 50.42

iii) Range = the highest value - the lowest value = 91 - 12 = 79

go to slide go to slide

graphical representation meaning in english

Book a Free Trial Class

Practice Questions on Graphical Representation of Data

Faqs on graphical representation of data, what is graphical representation.

Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

What are the Different Types of Graphical Representation?

The different types of graphical representation of data are:

  • Stem and leaf plot
  • Scatter diagrams
  • Frequency Distribution

Is the Graphical Representation of Numerical Data?

Yes, these graphical representations are numerical data that has been accumulated through various surveys and observations. The method of presenting these numerical data is called a chart. There are different kinds of charts such as a pie chart, bar graph, line graph, etc, that help in clearly showcasing the data.

What is the Use of Graphical Representation of Data?

Graphical representation of data is useful in clarifying, interpreting, and analyzing data plotting points and drawing line segments , surfaces, and other geometric forms or symbols.

What are the Ways to Represent Data?

Tables, charts, and graphs are all ways of representing data, and they can be used for two broad purposes. The first is to support the collection, organization, and analysis of data as part of the process of a scientific study.

What is the Objective of Graphical Representation of Data?

The main objective of representing data graphically is to display information visually that helps in understanding the information efficiently, clearly, and accurately. This is important to communicate the findings as well as analyze the data.

Robot

Go Green With Knowledge! Get 30% off on Annual Courses For World Environment Day with code NATURE30

Embibe Logo

Share this article

link

Table of Contents

Latest updates.

Ways To Improve Learning Outcomes: Learn Tips & Tricks

Ways To Improve Learning Outcomes: Learn Tips & Tricks

The Three States of Matter: Solids, Liquids, and Gases

The Three States of Matter: Solids, Liquids, and Gases

Types of Motion: Introduction, Parameters, Examples

Types of Motion: Introduction, Parameters, Examples

Understanding Frequency Polygon: Detailed Explanation

Understanding Frequency Polygon: Detailed Explanation

Uses of Silica Gel in Packaging?

Uses of Silica Gel in Packaging?

Visual Learning Style for Students: Pros and Cons

Visual Learning Style for Students: Pros and Cons

Air Pollution: Know the Causes, Effects & More

Air Pollution: Know the Causes, Effects & More

Sexual Reproduction in Flowering Plants

Sexual Reproduction in Flowering Plants

Integers Introduction: Check Detailed Explanation

Integers Introduction: Check Detailed Explanation

Human Respiratory System – Detailed Explanation

Human Respiratory System – Detailed Explanation

Tag cloud :.

  • entrance exams
  • engineering
  • ssc cgl 2024
  • Written By Sushma_P
  • Last Modified 22-06-2023

Graphical Representation: Advantages, Types & Examples

Graphical Representation: A graph is a categorised representation of data. It helps us understand the data easily. Data is a collection of numerical figures collected through surveying. The word data came from the Latin word ‘Datum’, which means ‘something given’. After developing a research question, data is being collected constantly through observation. Then the data collected is arranged, summarised, classified, and finally represented graphically. This is the concept of graphical representation of data.

Let’s study different kinds of graphical representations with examples, the types of graphical representation, and graphical representation of data in statistics, in this article.

What Are Graphical Representations?

Graphical representation refers to the use of intuitive charts to visualise clearly and simplify data sets. Data obtained from surveying is ingested into a graphical representation of data software. Then it is represented by some symbols, such as lines on a line graph, bars on a bar chart, or slices of a pie chart. In this way, users can achieve much more clarity and understanding than by numerical study alone. 

Advantages of Graphical Representation

Some of the advantages of using graphs are listed below:

  • The graph helps us understand the data or information even when we have no idea about it.
  • It saves time.
  • It makes it easier for us to compare the data for different time periods or different kinds.
  • It is mainly used in statistics to determine the mean, median and mode for different data and interpolation and extrapolation of data.

Use of Graphical Representations

The main agenda of presenting scientific data into graphs is to provide information efficiently to utilise the power of visual display while avoiding confusion or deception. This is important in communicating our findings to others and our understanding and analysis of the data.

Graphical data representation is crucial in understanding and identifying trends and patterns in the ever-increasing data flow. Graphical representation helps in quick analysis of large quantities and can support making predictions and informed decisions.

General Rules for Graphical Representation of Data

The following are a few rules to present the information in the graphical representation:

  • Suitable title:  The title of the graph should be appropriate that indicates the subject of the presentation.
  • Measurement unit:  The measurement unit in the graph should be mentioned.
  • Proper scale:   Choose a proper scale to represent the data accurately.
  • Index:  For better understanding, index the appropriate colours, shades, lines, and designs in the graphs. 
  • Data sources:  Data should be included wherever it is necessary at the bottom of the graph.
  • Keep it simple:  The construction of a graph should be such a way that it is effortlessly understood.
  • Neat:  The correct size, fonts, colours etc., should be chosen so that the graph should be a visual aid for presenting the information.

Types of Graphical Representation

1. Line graph 2. Histogram 3. Bar graph 4. Pie chart 5. Frequency polygon 6. Ogives or Cumulative frequency graphs

1. Line Graph

A line graph is a chart used to show information that changes over time. We plot line graphs by connecting several points with straight lines.  Another name is a line chart. The line graph contains two axes: \(x-\)axis and \(y-\)axis.

  • The horizontal axis is the \(x-\)axis.
  • The vertical axis is the \(y-\)axis.

Example: The following graph shows the number of motorbikes sold on different days of the week.

Line Graph

2. Histogram

Continuous data represented on the two-dimensional graph is called a histogram. In the histogram, the bars are placed continuously side by side without a gap between consecutive bars. In other words, rectangles are erected on the class intervals of the distribution. The areas of the rectangles formed by bars are proportional to the frequencies.

Example: Following is an example of a histogram showing the average pass percentage of students.

Histogram

3. Bar Graph

Bar graphs can be of two types – horizontal bar graphs and vertical bar graphs. While a horizontal bar graph is applied for qualitative data or data varying over space, the vertical bar graph is associated with quantitative data or time-series data.

Bars are rectangles of varying lengths and of equal width usually are drawn either horizontally or vertically. We consider multiple or grouped bar graphs to compare related series. Component or sub-divided bar diagrams are applied for representing data divided into several components. 

Example:  The following graph is an example of a bar graph representing the money spent month-wise

Bar Graph

4. Pie Chart

The sector of a circle represents various observations or components, and the whole circle represents the sum of the value of all the components. The total central angle of a circle is \({360^{\rm{o}}}\) and is divided according to the values of the components.

The central angle of a component\( = \frac{{{\rm{ value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{{\rm{total}}\,{\rm{value}}}} \times {360^{\rm{o}}}\)

Sometimes, the value of the components is expressed in percentages. In such cases, The central angle of a component\( = \frac{{{\rm{ percentage}}\,{\rm{value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{100}} \times {360^{\rm{o}}}\)

Example:  The following figure represents a pie-chart

Pie Chart

5. Frequency Polygon

A frequency polygon is another way of representing frequency distribution graphically. Follow the steps below to make a frequency polygon:

(i) Calculate and obtain the frequency distribution and the mid-points of each class interval. (ii) Represent the mid-points along the \(x-\)axis and the frequencies along the \(y-\)axis. (iii) Mark the points corresponding to the frequency at each midpoint. (iv) Now join these points in straight lines. (v) To finish the frequency polygon, join the consecutive points at each end (as the case may be at zero frequency) on the \(x-\)axis.

Example: The following graph is the frequency polygon showing the road race results.

Frequency Polygon

6. Ogives or Cumulative Frequency Graphs

By plotting cumulative frequency against the respective class intervals, we obtain ogives. There are two ogives – less than type ogives and more than type.

Less than type ogives is obtained by taking less than cumulative frequency on the vertical axis. We can obtain more than type ogives by plotting more than type cumulative frequency on the vertical axis and joining the plotted points successively by line segments.

Example: The below graph represents the less than and more than ogives for the entrance examination scores of \(60\) students.

Ogives or Cumulative Frequency Graphs

Solved Examples – Basic Graphical Representation

Q.1. The wildlife population in the following years, \(2013, 2014, 2015, 2016, 2017, 2018,\) and \(2019\) were \(300, 200, 400, 600, 500, 400\) and \(500,\) respectively. Represent these data using a line graph. Ans: We can represent the population for seven consecutive years by drawing a line diagram as given below. Let us consider years on the horizontal axis and population on the vertical axis.

For the year \(2013,\) the population was \(300.\) It can be written as a point \((2013, 300)\) Similarly, we can write the points for the succeeding years as follows: \((2014, 200), (2015, 400), (2016, 600), (2017, 500), (2018, 400)\) and \((2019, 500)\)

We can obtain the line graph by plotting all these points and joining them using a ruler. The following line diagram shows the population of wildlife from \(2013\) to \(2019.\)

 Basic Graphical Representation

Q.2. Draw a histogram for the following data that represents the marks scored by \(120\) students in an examination:

\(0-20\)\(20-40\)\(40-60\)\(60-80\)\(80-100\)
\(5\)\(10\)\(40\)\(45\)\(20\)

Ans: The class intervals are of an equal length of \(20\) marks. Let us indicate the class intervals along the \(x-\)axis and the number of students along the \(y-\)axis, with the appropriate scale. The histogram is given below.

 Basic Graphical Representation

Q.3. The total number of scoops of vanilla ice cream in the different months of a year is given below:

\(240\)\(400\)\(440\)\(320\)\(200\)

For the above data, draw a bar graph. Ans: The following graph represents the number of vanilla ice cream scoops sold from March to July. The month is indicated along the \(x-\)axis, and the number of scoops sold is represented along the \(y-\)axis.

 Basic Graphical Representation

Q.4. The number of hours spent by a working woman on various activities on a working day is given below. Using the angle measurement, draw a pie chart.

\(3\)\(7\)\(2\)\(9\)\(1\)\(2\)

Ans: The central angle of a component\( = \frac{{{\rm{ value}}\,{\rm{of}}\,{\rm{the}}\,{\rm{component }}}}{{{\rm{total}}\,{\rm{value}}}} \times {360^{\rm{o}}}\). We may calculate the central angles for various components as follow:

Household\(3\)\(\frac{3}{{24}} \times {360^{\rm{o}}} = {45^{\rm{o}}}\)
Sleep\(7\)\(\frac{7}{{24}} \times {360^{\rm{o}}} = {105^{\rm{o}}}\)
Cooking\(2\)\(\frac{2}{{24}} \times {360^{\rm{o}}} = {30^{\rm{o}}}\)
Office\(9\)\(\frac{9}{{24}} \times {360^{\rm{o}}} = {135^{\rm{o}}}\)
TV\(1\)\(\frac{1}{{24}} \times {360^{\rm{o}}} = {15^{\rm{o}}}\)
Other\(2\)\(\frac{2}{{24}} \times {360^{\rm{o}}} = {30^{\rm{o}}}\)
Total\(24\)\({360^{\rm{o}}}\)

By knowing the central angle, a pie chart is drawn,

 Basic Graphical Representation

Q.5. Draw a frequency polygon for the following data using a histogram.

\(140-145\)\(145-150\)\(150-155\)\(155-160\)\(160-165\)\(165-170\)\(170-175\)
\(35\)\(40\)\(55\)\(50\)\(40\)\(35\)\(20\)

Ans: To draw a frequency polygon, we take the imagined classes \(135-140\) at the beginning and \(175-180\) at the end, each with frequency zero. The following is the frequency table tabulated for the given data

\(140-145\)\(142.5\)\(35\)
\(145-150\)\(147.5\)\(40\)
\(150-155\)\(152.5\)\(55\)
\(155-160\)\(157.5\)\(50\)
\(160-165\)\(162.5\)\(40\)
\(165-170\)\(167.5\)\(35\)
\(170-175\)\(172.5\)\(20\)

Let’s mark the class intervals along the \(x-\)axis and the frequency along the \(y-\)axis.

 Basic Graphical Representation

Using the above table, plot the points on the histogram: \((137.5, 0), (142.5, 35), (147.5, 40), (152.5, 55), (157.5, 50), (162.5, 40),\) \((167.5, 35), (172.5, 20)\) and \((177.5, 0).\)

We join these points one after the other to obtain the required frequency polygon.

In this article, we have studied the details of the graphical representation of data. We learnt the meaning, uses, and advantages of using graphs . Then we studied the different types of graphs with examples. Lastly, we solved examples to help students understand the concept in a better way.

Frequently Asked Questions (FAQs) on Basic Graphical Representation

Q.1: What are graphical representations? Ans: Graphical representations represent given data using charts or graphs numerically and then visually analyse and interpret the information.

Q.2: What are the 6 types of graphs used? Ans: The following are the types of graphs we use commonly: 1. Line graph 2. Histogram 3. Bar graph 4. Pie chart 5. Frequency polygon 6. Ogives or cumulative frequency graphs

Q.3: What are the advantages of the graphical method? Ans: The advantages of using a graphical method are: 1. Facilitates improved learning 2. Knowing the content 3. Usage of flexibility 4. Increases thinking 5. Supports creative, personalised reports for more engaging and stimulating visual presentations 6. Better communication 7. It shows the whole picture

Q.4: What is the graphical representation of an idea? Ans: The graphical representations exhibit relationships between ideas, data, information and concepts in a visual graph or map. Graphical representations are effortless to acknowledge.

Q.5: How do you do frequency polygon? Ans: Frequency distribution is first obtained, and the midpoints of each class interval are found. Mark the midpoints along the \(x-\)axis and frequencies along the \(y-\)axis. Plot the points corresponding to the frequency. Join the points, using line segments in order.

Related Articles

Ways To Improve Learning Outcomes: With the development of technology, students may now rely on strategies to enhance learning outcomes. No matter how knowledgeable a...

The Three States of Matter: Anything with mass and occupied space is called ‘Matter’. Matters of different kinds surround us. There are some we can...

Motion is the change of a body's position or orientation over time. The motion of humans and animals illustrates how everything in the cosmos is...

Understanding Frequency Polygon: Students who are struggling with understanding Frequency Polygon can check out the details here. A graphical representation of data distribution helps understand...

When you receive your order of clothes or leather shoes or silver jewellery from any online shoppe, you must have noticed a small packet containing...

Visual Learning Style: We as humans possess the power to remember those which we have caught visually in our memory and that too for a...

Air Pollution: In the past, the air we inhaled was pure and clean. But as industrialisation grows and the number of harmful chemicals in the...

In biology, flowering plants are known by the name angiosperms. Male and female reproductive organs can be found in the same plant in flowering plants....

Integers Introduction: To score well in the exam, students must check out the Integers introduction and understand them thoroughly. The collection of negative numbers and whole...

Human Respiratory System: Students preparing for the NEET and Biology-related exams must have an idea about the human respiratory system. It is a network of tissues...

Place Value of Numbers: Detailed Explanation

Place Value of Numbers: Students must understand the concept of the place value of numbers to score high in the exam. In mathematics, place value...

The Leaf: Types, Structures, Parts

The Leaf: Students who want to understand everything about the leaf can check out the detailed explanation provided by Embibe experts. Plants have a crucial role...

Factors Affecting Respiration: Definition, Diagrams with Examples

In plants, respiration can be regarded as the reversal of the photosynthetic process. Like photosynthesis, respiration involves gas exchange with the environment. Unlike photosynthesis, respiration...

General Terms Related to Spherical Mirrors

General terms related to spherical mirrors: A mirror with the shape of a portion cut out of a spherical surface or substance is known as a...

Number System: Types, Conversion and Properties

Number System: Numbers are highly significant and play an essential role in Mathematics that will come up in further classes. In lower grades, we learned how...

Types of Respiration

Every living organism has to "breathe" to survive. The process by which the living organisms use their food to get energy is called respiration. It...

Animal Cell: Definition, Diagram, Types of Animal Cells

Animal Cell: An animal cell is a eukaryotic cell with membrane-bound cell organelles without a cell wall. We all know that the cell is the fundamental...

Conversion of Percentages: Conversion Method & Examples

Conversion of Percentages: To differentiate and explain the size of quantities, the terms fractions and percent are used interchangeably. Some may find it difficult to...

Arc of a Circle: Definition, Properties, and Examples

Arc of a circle: A circle is the set of all points in the plane that are a fixed distance called the radius from a fixed point...

Ammonia (NH3): Preparation, Structure, Properties and Uses

Ammonia, a colourless gas with a distinct odour, is a chemical building block and a significant component in producing many everyday items. It is found...

CGPA to Percentage: Calculator for Conversion, Formula, & More

CGPA to Percentage: The average grade point of a student is calculated using their cumulative grades across all subjects, omitting any supplemental coursework. Many colleges,...

Uses of Ether – Properties, Nomenclature, Uses, Disadvantages

Uses of Ether:  Ether is an organic compound containing an oxygen atom and an ether group connected to two alkyl/aryl groups. It is formed by the...

General and Middle Terms: Definitions, Formula, Independent Term, Examples

General and Middle terms: The binomial theorem helps us find the power of a binomial without going through the tedious multiplication process. Further, the use...

Mutually Exclusive Events: Definition, Formulas, Solved Examples

Mutually Exclusive Events: In the theory of probability, two events are said to be mutually exclusive events if they cannot occur simultaneously or at the...

Geometry: Definition, Shapes, Structure, Examples

Geometry is a branch of mathematics that is largely concerned with the forms and sizes of objects, their relative positions, and the qualities of space....

Bohr’s Model of Hydrogen Atom: Expressions for Radius, Energy

Rutherford’s Atom Model was undoubtedly a breakthrough in atomic studies. However, it was not wholly correct. The great Danish physicist Niels Bohr (1885–1962) made immediate...

Types of Functions: Definition, Classification and Examples

Types of Functions: Functions are the relation of any two sets. A relation describes the cartesian product of two sets. Cartesian products of two sets...

graphical representation meaning in english

39 Insightful Publications

World Economic Forum

Embibe Is A Global Innovator

accenture

Innovator Of The Year Education Forever

Interpretable And Explainable AI

Interpretable And Explainable AI

Tedx

Revolutionizing Education Forever

Amazon AI Conclave

Best AI Platform For Education

Forbes India

Enabling Teachers Everywhere

ACM

Decoding Performance

World Education Summit

Leading AI Powered Learning Solution Provider

Journal of Educational Data Mining

Auto Generation Of Tests

BW Disrupt

Disrupting Education In India

Springer

Problem Sequencing Using DKT

Fortune India Forty Under Fourty

Help Students Ace India's Toughest Exams

Edtech Digest

Best Education AI Platform

Nasscom Product Connect

Unlocking AI Through Saas

Tech In Asia

Fixing Student’s Behaviour With Data Analytics

Your Story

Leveraging Intelligence To Deliver Results

City AI

Brave New World Of Applied AI

vccircle

You Can Score Higher

INK Talks

Harnessing AI In Education

kstart

Personalized Ed-tech With AI

StartUpGrind

Exciting AI Platform, Personalizing Education

Digital Women Award

Disruptor Award For Maximum Business Impact

The Mumbai Summit 2020 AI

Top 20 AI Influencers In India

USPTO

Proud Owner Of 9 Patents

StartUpGrind

Innovation in AR/VR/MR

StartUpGrind

Best Animated Frames Award 2024

Close

Trending Searches

Previous year question papers, sample papers.

Unleash Your True Potential With Personalised Learning on EMBIBE

Pattern

Ace Your Exam With Personalised Learning on EMBIBE

Enter mobile number.

By signing up, you agree to our Privacy Policy and Terms & Conditions

  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Graphical Representation of Data

Graphical Representation of Data: Graphical Representation of Data,” where numbers and facts become lively pictures and colorful diagrams . Instead of staring at boring lists of numbers, we use fun charts, cool graphs, and interesting visuals to understand information better. In this exciting concept of data visualization, we’ll learn about different kinds of graphs, charts, and pictures that help us see patterns and stories hidden in data.

There is an entire branch in mathematics dedicated to dealing with collecting, analyzing, interpreting, and presenting numerical data in visual form in such a way that it becomes easy to understand and the data becomes easy to compare as well, the branch is known as Statistics .

The branch is widely spread and has a plethora of real-life applications such as Business Analytics, demography, Astro statistics, and so on . In this article, we have provided everything about the graphical representation of data, including its types, rules, advantages, etc.

Graphical-Representation-of-Data

Table of Content

What is Graphical Representation

Types of graphical representations, line graphs, histograms , stem and leaf plot , box and whisker plot .

  • Graphical Representations used in Maths

Value-Based or Time Series Graphs 

Frequency based, principles of graphical representations, advantages and disadvantages of using graphical system, general rules for graphical representation of data, frequency polygon, solved examples on graphical representation of data.

Graphics Representation is a way of representing any data in picturized form . It helps a reader to understand the large set of data very easily as it gives us various data patterns in visualized form.

There are two ways of representing data,

  • Pictorial Representation through graphs.

They say, “A picture is worth a thousand words”.  It’s always better to represent data in a graphical format. Even in Practical Evidence and Surveys, scientists have found that the restoration and understanding of any information is better when it is available in the form of visuals as Human beings process data better in visual form than any other form.

Does it increase the ability 2 times or 3 times? The answer is it increases the Power of understanding 60,000 times for a normal Human being, the fact is amusing and true at the same time.

Check: Graph and its representations

Comparison between different items is best shown with graphs, it becomes easier to compare the crux of the data about different items. Let’s look at all the different types of graphical representations briefly: 

A line graph is used to show how the value of a particular variable changes with time. We plot this graph by connecting the points at different values of the variable. It can be useful for analyzing the trends in the data and predicting further trends. 

graphical representation meaning in english

A bar graph is a type of graphical representation of the data in which bars of uniform width are drawn with equal spacing between them on one axis (x-axis usually), depicting the variable. The values of the variables are represented by the height of the bars. 

graphical representation meaning in english

This is similar to bar graphs, but it is based frequency of numerical values rather than their actual values. The data is organized into intervals and the bars represent the frequency of the values in that range. That is, it counts how many values of the data lie in a particular range. 

graphical representation meaning in english

It is a plot that displays data as points and checkmarks above a number line, showing the frequency of the point.  

graphical representation meaning in english

This is a type of plot in which each value is split into a “leaf”(in most cases, it is the last digit) and “stem”(the other remaining digits). For example: the number 42 is split into leaf (2) and stem (4).  

graphical representation meaning in english

These plots divide the data into four parts to show their summary. They are more concerned about the spread, average, and median of the data. 

graphical representation meaning in english

It is a type of graph which represents the data in form of a circular graph. The circle is divided such that each portion represents a proportion of the whole. 

graphical representation meaning in english

Graphical Representations used in Math’s

Graphs in Math are used to study the relationships between two or more variables that are changing. Statistical data can be summarized in a better way using graphs. There are basically two lines of thoughts of making graphs in maths: 

  • Value-Based or Time Series Graphs

These graphs allow us to study the change of a variable with respect to another variable within a given interval of time. The variables can be anything. Time Series graphs study the change of variable with time. They study the trends, periodic behavior, and patterns in the series. We are more concerned with the values of the variables here rather than the frequency of those values. 

Example: Line Graph

These kinds of graphs are more concerned with the distribution of data. How many values lie between a particular range of the variables, and which range has the maximum frequency of the values. They are used to judge a spread and average and sometimes median of a variable under study.

Also read: Types of Statistical Data
  • All types of graphical representations follow algebraic principles.
  • When plotting a graph, there’s an origin and two axes.
  • The x-axis is horizontal, and the y-axis is vertical.
  • The axes divide the plane into four quadrants.
  • The origin is where the axes intersect.
  • Positive x-values are to the right of the origin; negative x-values are to the left.
  • Positive y-values are above the x-axis; negative y-values are below.

graphical-representation

  • It gives us a summary of the data which is easier to look at and analyze.
  • It saves time.
  • We can compare and study more than one variable at a time.

Disadvantages

  • It usually takes only one aspect of the data and ignores the other. For example, A bar graph does not represent the mean, median, and other statistics of the data. 
  • Interpretation of graphs can vary based on individual perspectives, leading to subjective conclusions.
  • Poorly constructed or misleading visuals can distort data interpretation and lead to incorrect conclusions.
Check : Diagrammatic and Graphic Presentation of Data

We should keep in mind some things while plotting and designing these graphs. The goal should be a better and clear picture of the data. Following things should be kept in mind while plotting the above graphs: 

  • Whenever possible, the data source must be mentioned for the viewer.
  • Always choose the proper colors and font sizes. They should be chosen to keep in mind that the graphs should look neat.
  • The measurement Unit should be mentioned in the top right corner of the graph.
  • The proper scale should be chosen while making the graph, it should be chosen such that the graph looks accurate.
  • Last but not the least, a suitable title should be chosen.

A frequency polygon is a graph that is constructed by joining the midpoint of the intervals. The height of the interval or the bin represents the frequency of the values that lie in that interval. 

frequency-polygon

Question 1: What are different types of frequency-based plots? 

Types of frequency-based plots:  Histogram Frequency Polygon Box Plots

Question 2: A company with an advertising budget of Rs 10,00,00,000 has planned the following expenditure in the different advertising channels such as TV Advertisement, Radio, Facebook, Instagram, and Printed media. The table represents the money spent on different channels. 

Draw a bar graph for the following data. 

  • Put each of the channels on the x-axis
  • The height of the bars is decided by the value of each channel.

graphical representation meaning in english

Question 3: Draw a line plot for the following data 

  • Put each of the x-axis row value on the x-axis
  • joint the value corresponding to the each value of the x-axis.

graphical representation meaning in english

Question 4: Make a frequency plot of the following data: 

  • Draw the class intervals on the x-axis and frequencies on the y-axis.
  • Calculate the midpoint of each class interval.
Class Interval Mid Point Frequency
0-3 1.5 3
3-6 4.5 4
6-9 7.5 2
9-12 10.5 6

Now join the mid points of the intervals and their corresponding frequencies on the graph. 

graphical representation meaning in english

This graph shows both the histogram and frequency polygon for the given distribution.

Related Article:

Graphical Representation of Data| Practical Work in Geography Class 12 What are the different ways of Data Representation What are the different ways of Data Representation? Charts and Graphs for Data Visualization

Conclusion of Graphical Representation

Graphical representation is a powerful tool for understanding data, but it’s essential to be aware of its limitations. While graphs and charts can make information easier to grasp, they can also be subjective, complex, and potentially misleading . By using graphical representations wisely and critically, we can extract valuable insights from data, empowering us to make informed decisions with confidence.

Graphical Representation of Data – FAQs

What are the advantages of using graphs to represent data.

Graphs offer visualization, clarity, and easy comparison of data, aiding in outlier identification and predictive analysis.

What are the common types of graphs used for data representation?

Common graph types include bar, line, pie, histogram, and scatter plots , each suited for different data representations and analysis purposes.

How do you choose the most appropriate type of graph for your data?

Select a graph type based on data type, analysis objective, and audience familiarity to effectively convey information and insights.

How do you create effective labels and titles for graphs?

Use descriptive titles, clear axis labels with units, and legends to ensure the graph communicates information clearly and concisely.

How do you interpret graphs to extract meaningful insights from data?

Interpret graphs by examining trends, identifying outliers, comparing data across categories, and considering the broader context to draw meaningful insights and conclusions.

Please Login to comment...

Similar reads.

  • School Learning
  • Maths-Class-9
  • How to Get a Free SSL Certificate
  • Best SSL Certificates Provider in India
  • Elon Musk's xAI releases Grok-2 AI assistant
  • What is OpenAI SearchGPT? How it works and How to Get it?
  • Full Stack Developer Roadmap [2024 Updated]

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

graphical representation meaning in english

Graphical Representation

Graphical representation definition.

Graphical representation refers to the use of charts and graphs to visually display, analyze, clarify, and interpret numerical data, functions, and other qualitative structures. ‍

graphical representation meaning in english

What is Graphical Representation?

Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by numerical analysis alone. 

Representational graphics can quickly illustrate general behavior and highlight phenomenons, anomalies, and relationships between data points that may otherwise be overlooked, and may contribute to predictions and better, data-driven decisions. The types of representational graphics used will depend on the type of data being explored.

Types of Graphical Representation

Data charts are available in a wide variety of maps, diagrams, and graphs that typically include textual titles and legends to denote the purpose, measurement units, and variables of the chart. Choosing the most appropriate chart depends on a variety of different factors -- the nature of the data, the purpose of the chart, and whether a graphical representation of qualitative data or a graphical representation of quantitative data is being depicted. There are dozens of different formats for graphical representation of data. Some of the most popular charts include:

  • Bar Graph -- contains a vertical axis and horizontal axis and displays data as rectangular bars with lengths proportional to the values that they represent; a useful visual aid for marketing purposes
  • Choropleth -- thematic map in which an aggregate summary of a geographic characteristic within an area is represented by patterns of shading proportionate to a statistical variable
  • Flow Chart -- diagram that depicts a workflow graphical representation with the use of arrows and geometric shapes; a useful visual aid for business and finance purposes
  • Heatmap -- a colored, two-dimensional matrix of cells in which each cell represents a grouping of data and each cell’s color indicates its relative value
  • Histogram – frequency distribution and graphical representation uses adjacent vertical bars erected over discrete intervals to represent the data frequency within a given interval; a useful visual aid for meteorology and environment purposes
  • Line Graph – displays continuous data; ideal for predicting future events over time;  a useful visual aid for marketing purposes
  • Pie Chart -- shows percentage values as a slice of pie; a useful visual aid for marketing purposes
  • Pointmap -- CAD & GIS contract mapping and drafting solution that visualizes the location of data on a map by plotting geographic latitude and longitude data
  • Scatter plot -- a diagram that shows the relationship between two sets of data, where each dot represents individual pieces of data and each axis represents a quantitative measure
  • Stacked Bar Graph -- a graph in which each bar is segmented into parts, with the entire bar representing the whole, and each segment representing different categories of that whole; a useful visual aid for political science and sociology purposes
  • Timeline Chart -- a long bar labelled with dates paralleling it that display a list of events in chronological order, a useful visual aid for history charting purposes
  • Tree Diagram -- a hierarchical genealogical tree that illustrates a family structure; a useful visual aid for history charting purposes
  • Venn Diagram -- consists of multiple overlapping usually circles, each representing a set; the default inner join graphical representation

Proprietary and open source software for graphical representation of data is available in a wide variety of programming languages. Software packages often provide spreadsheets equipped with built-in charting functions.

Advantages and Disadvantages of Graphical Representation of Data

Tabular and graphical representation of data are a vital component in analyzing and understanding large quantities of numerical data and the relationship between data points. Data visualization is one of the most fundamental approaches to data analysis, providing an intuitive and universal means to visualize, abstract, and share complex data patterns. The primary advantages of graphical representation of data are:

  • Facilitates and improves learning: graphics make data easy to understand and eliminate language and literacy barriers
  • Understanding content: visuals are more effective than text in human understanding
  • Flexibility of use: graphical representation can be leveraged in nearly every field involving data
  • Increases structured thinking: users can make quick, data-driven decisions at a glance with visual aids
  • Supports creative, personalized reports for more engaging and stimulating visual  presentations 
  • Improves communication: analyzing graphs that highlight relevant themes is significantly faster than reading through a descriptive report line by line
  • Shows the whole picture: an instantaneous, full view of all variables, time frames, data behavior and relationships

Disadvantages of graphical representation of data typically concern the cost of human effort and resources, the process of selecting the most appropriate graphical and tabular representation of data, greater design complexity of visualizing data, and the potential for human bias.

Why Graphical Representation of Data is Important

Graphic visual representation of information is a crucial component in understanding and identifying patterns and trends in the ever increasing flow of data. Graphical representation enables the quick analysis of large amounts of data at one time and can aid in making predictions and informed decisions. Data visualizations also make collaboration significantly more efficient by using familiar visual metaphors to illustrate relationships and highlight meaning, eliminating complex, long-winded explanations of an otherwise chaotic-looking array of figures. 

Data only has value once its significance has been revealed and consumed, and its consumption is best facilitated with graphical representation tools that are designed with human cognition and perception in mind. Human visual processing is very efficient at detecting relationships and changes between sizes, shapes, colors, and quantities. Attempting to gain insight from numerical data alone, especially in big data instances in which there may be billions of rows of data, is exceedingly cumbersome and inefficient.

Does HEAVY.AI Offer a Graphical Representation Solution?

HEAVY.AI's visual analytics platform is an interactive data visualization client that works seamlessly with server-side technologies HEAVY.AIDB and Render to enable data science analysts to easily visualize and instantly interact with massive datasets. Analysts can interact with conventional charts and data tables, as well as big data graphical representations such as massive-scale scatterplots and geo charts. Data visualization contributes to a broad range of use cases, including performance analysis in business and guiding research in academia.

How to tell what you know well

What is a Graphical Representation

The proposed of graphical representations is to exhibit relationships between ideas, data , information and concepts in a visual map or diagram . Graphical representations are easy to understand. They can also be edited and shared. The type of graphical representations will depend on the type of information shown and learning domain. They are one of the most effective learning strategies.

A structured representation of information is closer to the workings of the human brain (structure of neurons) than other ways e.g. notes, highlights main ideas.

Advantages of graphical representations:

  • Facilitate and improve learning
  • Helps to understand content
  • Can be used in a variety of topics (lessons, articles, literature)
  • Increase structured thinking
  • Support creation of suggestive presentations
  • Helps to communicate
  • Useful for learning assessment and information evaluation
  • Increase creativity and helps to brainstorming

Types of graphical representations:

  • Concept Map
  • Info graphics

Print Friendly, PDF & Email

This project has been funded with support from the European Commission. The contents of this website reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein.

PARTNERS AND CREDITS

Project parters and credits Project website DISCLAIMER

We use cookies to give you the best online experience. By using our website you agree to our use of cookies in accordance with our cookie policy. OK Learn More Here.

InfinityLearn logo

Graphical Representation – Definition, Types, Benefits and FAQs

iit-jee, neet, foundation

Table of Contents

What is a Graph

A graph is a mathematical structure consisting of a set of vertices (or nodes) and a set of edges connecting them. The vertices are usually ordered pairs of numbers, while the edges are usually ordered pairs of real numbers. A graph may be undirected, meaning that the edges are unordered pairs, or it may be directed, meaning that the edges are ordered pairs and that the order matters.

Fill Out the Form for Expert Academic Guidance!

Please indicate your interest Live Classes Books Test Series Self Learning

Verify OTP Code (required)

I agree to the terms and conditions and privacy policy .

Fill complete details

Target Exam ---

graphical representation meaning in english

Types of Graphical Representation

There are three types of graphical representation:

1. Pie chart

2. Bar chart

3. Line chart

How to plot the Data Accurately on Graphs?

To plot data accurately on graphs, it is important to first understand the data that is being graphed. The axes of the graph should be labeled with the appropriate units of measurement, and the data should be graphed in a way that is easy to read. The most common way to graph data is to use a line graph, which plots points on a grid and connects them with a line. The points on the graph should be evenly spaced, and the line should be smooth and free of any irregularities.

Take free test

Basics of Graphical Representation

A graph is a graphical representation of data in which the points, called vertices, are connected by lines, called edges. The data can be anything from the relationships between people on social media networks to the connections between the atoms in a molecule.

The vertices in a graph can be labeled with any information that is relevant to the data. For example, in a social media network, the vertices might be labeled with the names of the people in the network, and the edges between the vertices might be labeled with the type of relationship between the people.

The layout of a graph can be customized to make the data more readable. For example, in a social media network, the edges between vertices could be drawn as straight lines instead of curves, in order to make it easier to see the relationships between the people.

Benefits of using Graphs

The benefits of using graphs include:

1. Graphs can help you to quickly and easily understand complex data.

2. Graphs can help you to identify patterns and trends in data.

3. Graphs can help you to make comparisons between data sets.

4. Graphs can help you to identify correlations between data sets.

Some Rules for Graphical Representation of Data

1. Use a different symbol for each category.

2. Use a different color for each category.

3. Use a different line type for each category.

4. Use a different size for each symbol.

5. Use a different font for each symbol.

Take free test

Importance of Graphical Representation

Graphical representation is important because it helps us to understand information visually. This is especially helpful when we are dealing with large amounts of data or when we need to see relationships between different pieces of information. Graphs can also help us to communicate information more effectively to others.

Related content

Image

Get access to free Mock Test and Master Class

Register to Get Free Mock Test and Study Material

Offer Ends in 5:00

Select your Course

Please select class.

Talk to our experts

1800-120-456-456

  • Graphs and Graphical Representation

ffImage

What are Graphs and Graphical Representation?

Graphical representation refers to the use of charts and graphs to visually analyze and display, interpret numerical value, clarify the qualitative structures. The data is represented by a variety of symbols such as line charts, bars, circles, ratios. Through this, greater insight is stuck in the mind while analyzing the information. 

Graphs can easily illustrate the behavior, highlight changes, and can study data points that may sometimes be overlooked. The type of data presentation depends upon the type of data being used. 

Graphical Representation of Data

The graphical representation is simply a way of analyzing numerical data. It comprises a relation between data, information, and ideas in a diagram. Anything portrayed in a graphical manner is easy to understand and is also termed as the most important learning technique. The graphical presentation is always dependent on the type of information conveyed. There are different types of graphical representation. These are as follows:

Line Graphs: 

Also denoted as linear graphs are used to examine continuous data and are also useful in predicting future events in time.

Histograms: 

This graph uses bars to represent the information. The bars represent the frequency of numerical data. All intervals are equal and hence, the width of each bar is also equal.

Bar Graphs: 

These are used to display the categories and compare the data using solid bars. These bars represent the quantities.

Frequency Table: 

This table shows the frequency of data that falls within that given time interval. 

Line Plot: 

It shows the frequency of data on a given line number.

Circle Graph: 

It is also known as a pie chart and shows the relationship between the parts of the whole. The circle consists of 100% and other parts shown are in different proportions.

Scatter Plot: 

The diagram shows the relationship between two sets of data. Each dot represents individual information of the data.

Venn Diagram: 

It consists of overlapping circles, each depicting a set. The inner-circle made is a graphical representation.

Stem and Leaf Plot: 

The data is organized from the least value to the highest value. The digits of the least place value form the leaf and that of the highest place value form the stem.

 Box and Whisker Plot: 

The data is summarised by dividing it into four parts. Box and whisker show the spread and median of the data.

Graphical Presentation of Data - Definition

It is a way of analyzing numerical data. It is a sort of chart which shows statistical data in the form of lines or curves which are plotted on the surface. It enables studying the cause and effect relationships between two variables . It helps to measure the extent of change in one variable when another variable changes. 

Principles of Graphical Representation

The variables in the graph are represented using two lines called coordinate axes. The horizontal and vertical axes are denoted by x and y respectively. Their point of intersection is called an origin ‘O’. Considering x-axes, the distance from the origin to the right will take a positive value, and the distance from the origin to the left will take a negative value. Taking the same procedure on y-axes. The points above origin will take the positive values and the points below origin will take negative values. As discussed in the earlier section about the types of graphical representation. There are four most widely used graphs namely histogram, pie diagram, frequency polygon, and ogive frequency graph.

Rules for Graphical Representation of Data

There are certain rules to effectively represent the information in graphical form. Certain rules are discussed below:

Title: One has to make sure that a suitable title is given to the graph which indicates the presentation subject.

Scale: It should be used efficiently to represent data in an accurate manner.

Measurement unit: It is used to calculate the distance between the box

Index: Differentiate appropriate colors, shades, and design I graph for a better understanding of the information conveyed.

Data sources: Include the source of information at the bottom graph wherever necessary. It adds to the authenticity of the information. 

Keep it simple: Construct the graph in an easy to understand manner and keep it simple for the reader to understand. Looking at the graph the information portrayed is easily understandable. 

Importance of Graphical Representation of Data

Some of the importance and advantages of using graphs to interpret data are listed below:

The graph is easiest to understand as the information portrayed is in facts and figures. Any information depicted in facts, figures, comparison grabs our attention, due to which they are memorizable for the long term.

It allows us to relate and compare data for different time periods.

It is used in statistics to determine the mean , mode, and median of different data.

It saves a lot of time as it covers most of the information in facts and figures. This in turn compacts the information.

arrow-right

FAQs on Graphs and Graphical Representation

Q1. State the Advantages and Disadvantages of Graphical Representation of Data?

Ans: These graphical presentations of data are vital components in analyzing the information. Data visualization is one of the most fundamental approaches to data representation. Its advantages include the following points:

Facilitates and improves learning

Flexibility of use

Understands content

Increase structure thinking

Supports creative thinking

Portrays the whole picture

Improves communication

With advantages, certain disadvantages are also linked to the graphical representation. The disadvantages concern the high cost of human effort, the process of selecting the most appropriate graphical and tabular presentation, creative thinking, greater design to interpret information, visualizing data, and as human resource is used. The potential for human bias plays a huge role.

Q2. What is the Graphical Representation of Data in Statistics?

Graphs are powerful data evaluation tools. They provide a quick visual summary of the information. In statistics information depicted is of mean, mode, and median. Box plots, histograms are used to depict the information. These graphs provide information about ranges, shapes, concentration, extreme values, etc. It studies information between different sets and trends whether increasing or decreasing. Since graphical methods are qualitative, they are not only the basis of comparison and information.

Cambridge Dictionary

  • Cambridge Dictionary +Plus

Meaning of graphical in English

Your browser doesn't support HTML5 audio

Examples of graphical

{{randomImageQuizHook.quizId}}

Word of the Day

Lofty ideas, etc. are of a high moral standard.

Trial, judge, and jury: talking about what happens when a criminal is caught

Trial, judge, and jury: talking about what happens when a criminal is caught

graphical representation meaning in english

Learn more with +Plus

  • Recent and Recommended {{#preferredDictionaries}} {{name}} {{/preferredDictionaries}}
  • Definitions Clear explanations of natural written and spoken English English Learner’s Dictionary Essential British English Essential American English
  • Grammar and thesaurus Usage explanations of natural written and spoken English Grammar Thesaurus
  • Pronunciation British and American pronunciations with audio English Pronunciation
  • English–Chinese (Simplified) Chinese (Simplified)–English
  • English–Chinese (Traditional) Chinese (Traditional)–English
  • English–Dutch Dutch–English
  • English–French French–English
  • English–German German–English
  • English–Indonesian Indonesian–English
  • English–Italian Italian–English
  • English–Japanese Japanese–English
  • English–Norwegian Norwegian–English
  • English–Polish Polish–English
  • English–Portuguese Portuguese–English
  • English–Spanish Spanish–English
  • English–Swedish Swedish–English
  • Dictionary +Plus Word Lists
  • American    Adjective
  • All translations

To add graphical to a word list please sign up or log in.

Add graphical to one of your lists below, or create a new one.

{{message}}

Something went wrong.

There was a problem sending your report.

Stack Exchange Network

Stack Exchange network consists of 183 Q&A communities including Stack Overflow , the largest, most trusted online community for developers to learn, share their knowledge, and build their careers.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

What is the difference between "graphic" and "graphical" as adjectives?

Are the two adjectives completely interchangeable, or is there a distinction between them?

Does it matter which I choose?

  • word-choice
  • derivational-morphology

herisson's user avatar

  • Could you use 'supplementary content' instead and avoid the confusion altogether? –  mjsqu Commented Apr 29, 2014 at 16:35
  • @mjsqu Wouldn't "supplementary" then become completely redundant, since I'm saying, essentially, that it should supplement rather than replace? –  Beofett Commented Apr 29, 2014 at 16:36
  • 1 I advise that you use graphical. Graphic has had the misfortune of acquiring a second meaning, usually that something is bloody, gory, and violent; i.e. graphically explicit. –  Anonym Commented Apr 29, 2014 at 16:39
  • While I appreciate the advice on which word to use (and I agree with the reasoning given), I would still like to know if there is a distinction in meaning, aside from the ambiguity of "graphic". –  Beofett Commented Apr 29, 2014 at 16:40
  • 2 Somewhat related, the canonical question: Why is it “geometric” but “theoretical”? –  RegDwigнt Commented Apr 29, 2014 at 18:25

4 Answers 4

As an adjective 'graphic' refers more directly to the actual process of drawing, or the discipline that has evolved from what used to involve training one how to draw. But 'graphical' refers less directly to drawing as a process, but to the visual result.

As a noun, all depictions are 'graphics', whether drawn or projected.

'Graphic' also has the meaning of 'so vivid you cannot avoid seeing it', as in graphic sex or violence. So people occasionally avoid using it when it can be taken in that sense. (Donkey Kong eating Princess Peach would be graphical violence, but not graphic violence.)

Jon Jay Obermark's user avatar

There is a very technical meaning which might illustrate one of the norms that Wilson mentioned. In mathematics, a graph is a representation of objects where some pairs of objects are connected by links. The adjective form of graph , in this sense, must be graphical .

So to say that a probabilistic model can be represented as a graph, where the objects are random variables and the random variables can be connected by links which represent their dependencies, is just like saying that a probabilistic model can be represented as a graphical model . You cannot use graphic model in this context. (I have heard people say graph model , although that sounds jarring to me)

H. Lee's user avatar

  • Would you say "graphic representation of a temporal sequence" or "graphical representation of a temporal sequence"? –  skan Commented Dec 7, 2018 at 0:20
  • Nowadays, the word graphic is widely used as a noun to refer to an image that is generated by a computer.
  • Written, drawn or engraved as in "graphic symbols";
  • Of or relating to the graphic arts as in "the graphic works of the Inca";
  • Relating to or presented by a graph as in "a graphic presentation of students' scores";
  • Evoking lifelike images within the mind as in "a graphic description of house";
  • Giving a detailed description of nudity or sexual activity as in " a graphic narration of what he/she did with her/him in bed.

Graphical is used adjective and not as a noun. It is used mainly to mean:

  • Relating to or presented by a graph as in "a graphical presentation of students' scores";
  • Written, drawn or engraved as in "graphical symbols".

It can be said that " graphic is wider in meaning than graphical .

Gleb Sabirzyanov's user avatar

As adjectives, graphic and graphical are equivalent. Graphic is also a noun, as in a visual graphic, whereas graphical is only an adjective.

However, there are phrases where graphic is conventionally used, other phrases where graphical is the norm. Therefore, it's important to choose the correct word for a given situation.

For example:

graphic arts, graphic equalizer, graphic novel[s], graphic artist[s], graphics card[s], graphic designer[s] flowcharts are graphical presentations, graphical user interface

Andrew Leach's user avatar

  • So, um. Graphic and graphical are not equivalent, after all. Indeed, it would be impossible for them to be equivalent due to blocking . –  RegDwigнt Commented Apr 29, 2014 at 23:22
  • They have equivalent meanings, but there are idioms and set phrases that happen to use just one or the other. –  Barmar Commented Feb 26, 2019 at 1:14

Your Answer

Sign up or log in, post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged word-choice adjectives suffixes derivational-morphology ic-ical or ask your own question .

  • Featured on Meta
  • Bringing clarity to status tag usage on meta sites
  • We've made changes to our Terms of Service & Privacy Policy - July 2024
  • Announcing a change to the data-dump process

Hot Network Questions

  • Are there any original heat shield tiles on any of the retired space shuttles that flew to space?
  • Why are volumes of revolution typically taught in Calculus 2 and not Calculus 3?
  • Idiomatic alternative to “going to Canossa”
  • Efficiently tagging first and last of each object matching condition
  • How can I address my colleague communicating with us via chatGPT?
  • How to extract code into library allowing changes without workflow overhead
  • Vector of integers such that almost all dot products are positive
  • Defining not-custom graduated style to polygon layer in PyQGIS
  • Do mini-humans need a "real" Saturn V to reach the moon?
  • What is the lesson of the Book of Iyov for the "average" person
  • Is it possible to do physics without mathematics?
  • Why if gravity were higher, designing a fully reusable rocket would be impossible?
  • Is there racial discrimination at Tbilisi airport?
  • How do logic gates handle if-else statements?
  • Can figere come with a dative?
  • What Christian ideas are found in the New Testament that are not found in the Old Testament?
  • What does 北渐 mean?
  • Does my AC vent air from the room to outside?
  • Numbering system of equations and specific lines therein
  • If physics can be reduced to mathematics (and thus to logic), does this mean that (physical) causation is ultimately reducible to implication?
  • Melee Opportunist--making opportunity attacks have some bite for melee characters
  • Visualizing histogram of data on unit circle?
  • Aftermarket stereo wiring help for 2012 chevy colorado WT
  • How do I type the characters ├ ─ and └?

graphical representation meaning in english

COMMENTS

  1. Graphical Representation

    Graphical Representation is a way of analysing numerical data. It exhibits the relation between data, ideas, information and concepts in a diagram. It is easy to understand and it is one of the most important learning strategies. It always depends on the type of information in a particular domain. There are different types of graphical ...

  2. Graphical Representation

    Graphical representation is a form of visually displaying data through various methods like graphs, diagrams, charts, and plots. It helps in sorting, visualizing, and presenting data in a clear manner through different types of graphs. Statistics mainly use graphical representation to show data.

  3. GRAPHICAL REPRESENTATION definition and meaning

    GRAPHICAL REPRESENTATION definition | Meaning, pronunciation, translations and examples

  4. Graphical Representation, Its Advantages & Uses

    Graphical Representation: A graph is a categorised representation of data. It helps us understand the data easily. Data is a collection of numerical figures collected through surveying. ... In this article, we have studied the details of the graphical representation of data. We learnt the meaning, uses, and advantages of using graphs. Then we ...

  5. Graphical Representation of Data

    A bar graph is a type of graphical representation of the data in which bars of uniform width are drawn with equal spacing between them on one axis (x-axis usually), depicting the variable. The values of the variables are represented by the height of the bars. Histograms.

  6. What is Graphical Representation? Definition and FAQs

    Graphical representation refers to the use of intuitive charts to clearly visualize and simplify data sets. Data is ingested into graphical representation of data software and then represented by a variety of symbols, such as lines on a line chart, bars on a bar chart, or slices on a pie chart, from which users can gain greater insight than by ...

  7. Chart

    The term "chart" as a graphical representation of data has multiple meanings: A data chart is a type of diagram or graph, that organizes and represents a set of numerical or qualitative data. Maps that are adorned with extra information ( map surround) for a specific purpose are often known as charts, such as a nautical chart or aeronautical ...

  8. What is a Graphical Representation

    A structured representation of information is closer to the workings of the human brain (structure of neurons) than other ways e.g. notes, highlights main ideas. Advantages of graphical representations: Facilitate and improve learning; Helps to understand content; Can be used in a variety of topics (lessons, articles, literature)

  9. Graphical Representation

    Basics of Graphical Representation. A graph is a graphical representation of data in which the points, called vertices, are connected by lines, called edges. The data can be anything from the relationships between people on social media networks to the connections between the atoms in a molecule. The vertices in a graph can be labeled with any ...

  10. Graphical Representation: Meaning, Example, Use, Types & More!

    Graphical Representation is a form of analyzing data. It explains the affinity amongst data, ideas, data, and concepts via diagrams and graphs. Once people can imagine the data, it makes it easier to interpret. This Representation relies on the type of data. Graphical representation theory is not directly asked in the examination, but this ...

  11. Graphs and Graphical Representation

    Graphical representation refers to the use of charts and graphs to visually analyze and display, interpret numerical value, clarify the qualitative structures. The data is represented by a variety of symbols such as line charts, bars, circles, ratios. Through this, greater insight is stuck in the mind while analyzing the information.

  12. Graphical Representation: Types, Rules, Principles & Examples

    A graphical representation is the geometrical image of a set of data that preserves its characteristics and displays them at a glance. It is a mathematical picture of data points. It enables us to think about a statistical problem in visual terms. It is an effective tool for the preparation, understanding and interpretation of the collected data.

  13. Graphical Representation of Data

    View solution. >. The following data on the number of girls (to the nearest ten) per thousand boys in different sections of Indian society is given below. (i) Represent the information above by a bar graph. (ii) In the classroom discuss what conclusions can be arrived at from the graph.

  14. Interpreting Graphical Representations

    Interpreting Graphical Representations. Lesson Transcript. Instructor Yuanxin (Amy) Yang Alcocer. Amy has a master's degree in secondary education and has been teaching math for over 9 years. Amy ...

  15. What Is Data Visualization? Definition & Examples

    Data visualization is the graphical representation of information and data. By using v isual elements like charts, graphs, and maps, data visualization tools provide an accessible way to see and understand trends, outliers, and patterns in data. Additionally, it provides an excellent way for employees or business owners to present data to non ...

  16. GRAPHICAL REPRESENTATION definition in American English

    GRAPHICAL REPRESENTATION meaning | Definition, pronunciation, translations and examples in American English. TRANSLATOR. LANGUAGE. GAMES. SCHOOLS. BLOG. RESOURCES. More . English. ... (Unregistered users can only access the International English interface for some pages.) Submit new words and phrases to the dictionary.

  17. graphical representation collocation

    Examples of graphical representation in a sentence, how to use it. 19 examples: The graphical representation of the graph will have the semi-edges cut short. - Symbolic…

  18. GRAPHICAL definition in American English

    Definition of 'graphical' ... [ADJ n] A graphical representation of something uses graphs or similar images to represent statistics or figures. A graphical representation of results is shown in figure 1. ... There are many diverse influences on the way that English is used across the world today. We look at some of the ways in which the ...

  19. GRAPHICAL

    GRAPHICAL meaning: represented by or relating to a graph. Learn more.

  20. GRAPHICAL

    GRAPHICAL definition: represented by or relating to a graph. Learn more.

  21. GRAPHICAL definition and meaning

    A graphical representation of something uses graphs or similar images to represent statistics.... Click for English pronunciations, examples sentences, video.

  22. word choice

    There is a very technical meaning which might illustrate one of the norms that Wilson mentioned. In mathematics, a graph is a representation of objects where some pairs of objects are connected by links. The adjective form of graph, in this sense, must be graphical.. So to say that a probabilistic model can be represented as a graph, where the objects are random variables and the random ...

  23. GRAPHIC REPRESENTATION OF definition and meaning

    GRAPHIC REPRESENTATION OF definition | Meaning, pronunciation, translations and examples