ct-logo

189+ Good Quantitative Research Topics For STEM Students

Quantitative research is an essential part of STEM (Science, Technology, Engineering, and Mathematics) fields. It involves collecting and analyzing numerical data to answer research questions and test hypotheses. 

In 2023, STEM students have a wealth of exciting research opportunities in various disciplines. Whether you’re an undergraduate or graduate student, here are quantitative research topics to consider for your next project.

If you are looking for the best list of quantitative research topics for stem students, then you can check the given list in each field. It offers STEM students numerous opportunities to explore and contribute to their respective fields in 2023 and beyond. 

Whether you’re interested in astrophysics, biology, engineering, mathematics, or any other STEM field.

Also Read: Most Exciting Qualitative Research Topics For Students

What Is Quantitative Research

Table of Contents

Quantitative research is a type of research that focuses on the organized collection, analysis, and evaluation of numerical data to answer research questions, test theories, and find trends or connections between factors. It is an organized, objective way to do study that uses measurable data and scientific methods to come to results.

Quantitative research is often used in many areas, such as the natural sciences, social sciences, economics, psychology, education, and market research. It gives useful information about patterns, trends, cause-and-effect relationships, and how often things happen. Quantitative tools are used by researchers to answer questions like “How many?” and “How often?” “Is there a significant difference?” or “What is the relationship between the variables?”

In comparison to quantitative research, qualitative research uses non-numerical data like conversations, notes, and open-ended surveys to understand and explore the ideas, experiences, and points of view of people or groups. Researchers often choose between quantitative and qualitative methods based on their research goals, questions, and the type of thing they are studying.

How To Choose Quantitative Research Topics For STEM

Here’s a step-by-step guide on how to choose quantitative research topics for STEM:

Step 1:- Identify Your Interests and Passions

Start by reflecting on your personal interests within STEM. What areas or subjects in STEM excite you the most? Choosing a topic you’re passionate about will keep you motivated throughout the research process.

Step 2:- Review Coursework and Textbooks

Look through your coursework, textbooks, and class notes. Identify concepts, theories, or areas that you found particularly intriguing or challenging. These can be a source of potential research topics.

Step 3:- Consult with Professors and Advisors

Discuss your research interests with professors, academic advisors, or mentors. They can provide valuable insights, suggest relevant topics, and guide you toward areas with research opportunities.

Step 4:- Read Recent Literature

Explore recent research articles, journals, and publications in STEM fields. This will help you identify current trends, gaps in knowledge, and areas where further research is needed.

Step 5:- Narrow Down Your Focus

Once you have a broad area of interest, narrow it down to a specific research focus. Consider questions like:

  • What specific problem or phenomenon do you want to investigate?
  • Are there unanswered questions or controversies in this area?
  • What impact could your research have on the field or society?

Step 6:- Consider Resources and Access

Assess the resources available to you, including access to laboratories, equipment, databases, and funding. Ensure that your chosen topic aligns with the resources you have or can access.

Step 7:- Think About Practicality

Consider the feasibility of conducting research on your chosen topic. Are the data readily available, or will you need to collect data yourself? Can you complete the research within your available time frame?

Step 8:- Define Your Research Question

Formulate a clear and specific research question or hypothesis. Your research question should guide your entire study and provide a focus for your data collection and analysis.

Step 9:- Conduct a Literature Review

Dive deeper into the existing literature related to your chosen topic. This will help you understand the current state of research, identify gaps, and refine your research question.

Step 10:- Consider the Impact

Think about the potential impact of your research. How does your topic contribute to the advancement of knowledge in your field? Does it have practical applications or implications for society?

Step 11:- Brainstorm Research Methods

Determine the quantitative research methods and data collection techniques you plan to use. Consider whether you’ll conduct experiments, surveys, data analysis, simulations, or use existing datasets.

Step 12:- Seek Feedback

Share your research topic and ideas with peers, advisors, or mentors. They can provide valuable feedback and help you refine your research focus.

Step 13:- Assess Ethical Considerations

Consider ethical implications related to your research, especially if it involves human subjects, sensitive data, or potential environmental impacts. Ensure that your research adheres to ethical guidelines.

Step 14:- Finalize Your Research Topic

Once you’ve gone through these steps, finalize your research topic. Write a clear and concise research proposal that outlines your research question, objectives, methods, and expected outcomes.

Step 15:- Stay Open to Adjustments

Be open to adjusting your research topic as you progress. Sometimes, new insights or challenges may lead you to refine or adapt your research focus.

Following are the most interesting quantitative research topics for stem students. These are given below.

Quantitative Research Topics In Physics and Astronomy

  • Quantum Computing Algorithms : Investigate new algorithms for quantum computers and their potential applications.
  • Dark Matter Detection Methods : Explore innovative approaches to detect dark matter particles.
  • Quantum Teleportation : Study the principles and applications of quantum teleportation.
  • Exoplanet Characterization : Analyze data from telescopes to characterize exoplanets.
  • Nuclear Fusion Modeling : Create mathematical models for nuclear fusion reactions.
  • Superconductivity at High Temperatures : Research the properties and applications of high-temperature superconductors.
  • Gravitational Wave Analysis : Analyze gravitational wave data to study astrophysical phenomena.
  • Black Hole Thermodynamics : Investigate the thermodynamics of black holes and their entropy.

Quantitative Research Topics In Biology and Life Sciences

  • Genome-Wide Association Studies (GWAS) : Conduct GWAS to identify genetic factors associated with diseases.
  • Pharmacokinetics and Pharmacodynamics : Study drug interactions in the human body.
  • Ecological Modeling : Model ecosystems to understand population dynamics.
  • Protein Folding : Research the kinetics and thermodynamics of protein folding.
  • Cancer Epidemiology : Analyze cancer incidence and risk factors in specific populations.
  • Neuroimaging Analysis : Develop algorithms for analyzing brain imaging data.
  • Evolutionary Genetics : Investigate evolutionary patterns using genetic data.
  • Stem Cell Differentiation : Study the factors influencing stem cell differentiation.

Engineering and Technology Quantitative Research Topics

  • Renewable Energy Efficiency : Optimize the efficiency of solar panels or wind turbines.
  • Aerodynamics of Drones : Analyze the aerodynamics of drone designs.
  • Autonomous Vehicle Safety : Evaluate safety measures for autonomous vehicles.
  • Machine Learning in Robotics : Implement machine learning algorithms for robot control.
  • Blockchain Scalability : Research methods to scale blockchain technology.
  • Quantum Computing Hardware : Design and test quantum computing hardware components.
  • IoT Security : Develop security protocols for the Internet of Things (IoT).
  • 3D Printing Materials Analysis : Study the mechanical properties of 3D-printed materials.

Quantitative Research Topics In Mathematics and Statistics

Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics.

  • Prime Number Distribution : Investigate the distribution of prime numbers.
  • Graph Theory Algorithms : Develop algorithms for solving graph theory problems.
  • Statistical Analysis of Financial Markets : Analyze financial data and market trends.
  • Number Theory Research : Explore unsolved problems in number theory.
  • Bayesian Machine Learning : Apply Bayesian methods to machine learning models.
  • Random Matrix Theory : Study the properties of random matrices in mathematics and physics.
  • Topological Data Analysis : Use topology to analyze complex data sets.
  • Quantum Algorithms for Optimization : Research quantum algorithms for optimization problems.

Experimental Quantitative Research Topics In Science and Earth Sciences

  • Climate Change Modeling : Develop climate models to predict future trends.
  • Biodiversity Conservation Analysis : Analyze data to support biodiversity conservation efforts.
  • Geographic Information Systems (GIS) : Apply GIS techniques to solve environmental problems.
  • Oceanography and Remote Sensing : Use satellite data for oceanographic research.
  • Air Quality Monitoring : Develop sensors and models for air quality assessment.
  • Hydrological Modeling : Study the movement and distribution of water resources.
  • Volcanic Activity Prediction : Predict volcanic eruptions using quantitative methods.
  • Seismology Data Analysis : Analyze seismic data to understand earthquake patterns.

Chemistry and Materials Science Quantitative Research Topics

  • Nanomaterial Synthesis and Characterization : Research the synthesis and properties of nanomaterials.
  • Chemoinformatics : Analyze chemical data for drug discovery and materials science.
  • Quantum Chemistry Simulations : Perform quantum simulations of chemical reactions.
  • Materials for Renewable Energy : Investigate materials for energy storage and conversion.
  • Catalysis Kinetics : Study the kinetics of chemical reactions catalyzed by materials.
  • Polymer Chemistry : Research the properties and applications of polymers.
  • Analytical Chemistry Techniques : Develop new analytical techniques for chemical analysis.
  • Sustainable Chemistry : Explore green chemistry approaches for sustainable materials.

Computer Science and Information Technology Topics

  • Natural Language Processing (NLP) : Work on NLP algorithms for language understanding.
  • Cybersecurity Analytics : Analyze cybersecurity threats and vulnerabilities.
  • Big Data Analytics : Apply quantitative methods to analyze large data sets.
  • Machine Learning Fairness : Investigate bias and fairness issues in machine learning models.
  • Human-Computer Interaction (HCI) : Study user behavior and interaction patterns.
  • Software Performance Optimization : Optimize software applications for performance.
  • Distributed Systems Analysis : Analyze the performance of distributed computing systems.
  • Bioinformatics Data Mining : Develop algorithms for mining biological data.

Good Quantitative Research Topics Students In Medicine and Healthcare

  • Clinical Trial Data Analysis : Analyze clinical trial data to evaluate treatment effectiveness.
  • Epidemiological Modeling : Model disease spread and intervention strategies.
  • Healthcare Data Analytics : Analyze healthcare data for patient outcomes and cost reduction.
  • Medical Imaging Algorithms : Develop algorithms for medical image analysis.
  • Genomic Medicine : Apply genomics to personalized medicine approaches.
  • Telemedicine Effectiveness : Study the effectiveness of telemedicine in healthcare delivery.
  • Health Informatics : Analyze electronic health records for insights into patient care.

Agriculture and Food Sciences Topics

  • Precision Agriculture : Use quantitative methods for optimizing crop production.
  • Food Safety Analysis : Analyze food safety data and quality control.
  • Aquaculture Sustainability : Research sustainable practices in aquaculture.
  • Crop Disease Modeling : Model the spread of diseases in agricultural crops.
  • Climate-Resilient Agriculture : Develop strategies for agriculture in changing climates.
  • Food Supply Chain Optimization : Optimize food supply chain logistics.
  • Soil Health Assessment : Analyze soil data for sustainable land management.

Social Sciences with Quantitative Approaches

  • Educational Data Mining : Analyze educational data for improving learning outcomes.
  • Sociodemographic Surveys : Study social trends and demographics using surveys.
  • Psychometrics : Develop and validate psychological measurement instruments.
  • Political Polling Analysis : Analyze political polling data and election trends.
  • Economic Modeling : Develop economic models for policy analysis.
  • Urban Planning Analytics : Analyze data for urban planning and infrastructure.
  • Climate Policy Evaluation : Evaluate the impact of climate policies on society.

Environmental Engineering Quantitative Research Topics

  • Water Quality Assessment : Analyze water quality data for environmental monitoring.
  • Waste Management Optimization : Optimize waste collection and recycling programs.
  • Environmental Impact Assessments : Evaluate the environmental impact of projects.
  • Air Pollution Modeling : Model the dispersion of air pollutants in urban areas.
  • Sustainable Building Design : Apply quantitative methods to sustainable architecture.

Quantitative Research Topics Robotics and Automation

  • Robotic Swarm Behavior : Study the behavior of robot swarms in different tasks.
  • Autonomous Drone Navigation : Develop algorithms for autonomous drone navigation.
  • Humanoid Robot Control : Implement control algorithms for humanoid robots.
  • Robotic Grasping and Manipulation : Study robotic manipulation techniques.
  • Reinforcement Learning for Robotics : Apply reinforcement learning to robotic control.

Quantitative Research Topics Materials Engineering

  • Additive Manufacturing Process Optimization : Optimize 3D printing processes.
  • Smart Materials for Aerospace : Research smart materials for aerospace applications.
  • Nanostructured Materials for Energy Storage : Investigate energy storage materials.
  • Corrosion Prevention : Develop corrosion-resistant materials and coatings.

Nuclear Engineering Quantitative Research Topics

  • Nuclear Reactor Safety Analysis : Study safety aspects of nuclear reactor designs.
  • Nuclear Fuel Cycle Analysis : Analyze the nuclear fuel cycle for efficiency.
  • Radiation Shielding Materials : Research materials for radiation protection.

Quantitative Research Topics In Biomedical Engineering

  • Medical Device Design and Testing : Develop and test medical devices.
  • Biomechanics Analysis : Analyze biomechanics in sports or rehabilitation.
  • Biomaterials for Medical Implants : Investigate materials for medical implants.

Good Quantitative Research Topics Chemical Engineering

  • Chemical Process Optimization : Optimize chemical manufacturing processes.
  • Industrial Pollution Control : Develop strategies for pollution control in industries.
  • Chemical Reaction Kinetics : Study the kinetics of chemical reactions in industries.

Best Quantitative Research Topics In Renewable Energy

  • Energy Storage Systems : Research and optimize energy storage solutions.
  • Solar Cell Efficiency : Improve the efficiency of photovoltaic cells.
  • Wind Turbine Performance Analysis : Analyze and optimize wind turbine designs.

Brilliant Quantitative Research Topics In Astronomy and Space Sciences

  • Astrophysical Simulations : Simulate astrophysical phenomena using numerical methods.
  • Spacecraft Trajectory Optimization : Optimize spacecraft trajectories for missions.
  • Exoplanet Detection Algorithms : Develop algorithms for exoplanet detection.

Quantitative Research Topics In Psychology and Cognitive Science

  • Cognitive Psychology Experiments : Conduct quantitative experiments in cognitive psychology.
  • Emotion Recognition Algorithms : Develop algorithms for emotion recognition in AI.
  • Neuropsychological Assessments : Create quantitative assessments for brain function.

Geology and Geological Engineering Quantitative Research Topics

  • Geological Data Analysis : Analyze geological data for mineral exploration.
  • Geological Hazard Prediction : Predict geological hazards using quantitative models.

Top Quantitative Research Topics In Forensic Science

  • Forensic Data Analysis : Analyze forensic evidence using quantitative methods.
  • Crime Pattern Analysis : Study crime patterns and trends in urban areas.

Great Quantitative Research Topics In Cybersecurity

  • Network Intrusion Detection : Develop quantitative methods for intrusion detection.
  • Cryptocurrency Analysis : Analyze blockchain data and cryptocurrency trends.

Mathematical Biology Quantitative Research Topics

  • Epidemiological Modeling : Model disease spread and control in populations.
  • Population Genetics : Analyze genetic data to understand population dynamics.

Quantitative Research Topics In Chemical Analysis

  • Analytical Chemistry Methods : Develop quantitative methods for chemical analysis.
  • Spectroscopy Analysis : Analyze spectroscopic data for chemical identification.

Mathematics Education Quantitative Research Topics

  • Mathematics Curriculum Analysis : Analyze curriculum effectiveness in mathematics education.
  • Mathematics Assessment Development : Develop quantitative assessments for mathematics skills.

Quantitative Research Topics In Social Research

  • Social Network Analysis : Analyze social network structures and dynamics.
  • Survey Research : Conduct quantitative surveys on social issues and trends.

Quantitative Research Topics In Computational Neuroscience

  • Neural Network Modeling : Model neural networks and brain functions computationally.
  • Brain Connectivity Analysis : Analyze functional and structural brain connectivity.

Best Topics In Transportation Engineering

  • Traffic Flow Modeling : Model and optimize traffic flow in urban areas.
  • Public Transportation Efficiency : Analyze the efficiency of public transportation systems.

Good Quantitative Research Topics In Energy Economics

  • Energy Policy Analysis : Evaluate the economic impact of energy policies.
  • Renewable Energy Cost-Benefit Analysis : Assess the economic viability of renewable energy projects.

Quantum Information Science

  • Quantum Cryptography Protocols : Develop and analyze quantum cryptography protocols.
  • Quantum Key Distribution : Study the security of quantum key distribution systems.

Human Genetics

  • Genome Editing Ethics : Investigate ethical issues in genome editing technologies.
  • Population Genomics : Analyze genomic data for population genetics research.

Marine Biology

  • Coral Reef Health Assessment : Quantitatively assess the health of coral reefs.
  • Marine Ecosystem Modeling : Model marine ecosystems and biodiversity.

Data Science and Machine Learning

  • Machine Learning Explainability : Develop methods for explaining machine learning models.
  • Data Privacy in Machine Learning : Study privacy issues in machine learning applications.
  • Deep Learning for Image Analysis : Develop deep learning models for image recognition.

Environmental Engineering

Robotics and automation, materials engineering, nuclear engineering, biomedical engineering, chemical engineering, renewable energy, astronomy and space sciences, psychology and cognitive science, geology and geological engineering, forensic science, cybersecurity, mathematical biology, chemical analysis, mathematics education, quantitative social research, computational neuroscience, quantitative research topics in transportation engineering, quantitative research topics in energy economics, topics in quantum information science, amazing quantitative research topics in human genetics, quantitative research topics in marine biology, what is a common goal of qualitative and quantitative research.

A common goal of both qualitative and quantitative research is to generate knowledge and gain a deeper understanding of a particular phenomenon or topic. However, they approach this goal in different ways:

1. Understanding a Phenomenon

Both types of research aim to understand and explain a specific phenomenon, whether it’s a social issue, a natural process, a human behavior, or a complex event.

2. Testing Hypotheses

Both qualitative and quantitative research can involve hypothesis testing. While qualitative research may not use statistical hypothesis tests in the same way as quantitative research, it often tests hypotheses or research questions by examining patterns and themes in the data.

3. Contributing to Knowledge

Researchers in both approaches seek to contribute to the body of knowledge in their respective fields. They aim to answer important questions, address gaps in existing knowledge, and provide insights that can inform theory, practice, or policy.

4. Informing Decision-Making

Research findings from both qualitative and quantitative studies can be used to inform decision-making in various domains, whether it’s in academia, government, industry, healthcare, or social services.

5. Enhancing Understanding

Both approaches strive to enhance our understanding of complex phenomena by systematically collecting and analyzing data. They aim to provide evidence-based explanations and insights.

6. Application

Research findings from both qualitative and quantitative studies can be applied to practical situations. For example, the results of a quantitative study on the effectiveness of a new drug can inform medical treatment decisions, while qualitative research on customer preferences can guide marketing strategies.

7. Contributing to Theory

In academia, both types of research contribute to the development and refinement of theories in various disciplines. Quantitative research may provide empirical evidence to support or challenge existing theories, while qualitative research may generate new theoretical frameworks or perspectives.

Conclusion – Quantitative Research Topics For STEM Students

So, selecting a quantitative research topic for STEM students is a pivotal decision that can shape the trajectory of your academic and professional journey. The process involves a thoughtful exploration of your interests, a thorough review of the existing literature, consideration of available resources, and the formulation of a clear and specific research question.

Your chosen topic should resonate with your passions, align with your academic or career goals, and offer the potential to contribute to the body of knowledge in your STEM field. Whether you’re delving into physics, biology, engineering, mathematics, or any other STEM discipline, the right research topic can spark curiosity, drive innovation, and lead to valuable insights.

Moreover, quantitative research in STEM not only expands the boundaries of human knowledge but also has the power to address real-world challenges, improve technology, and enhance our understanding of the natural world. It is a journey that demands dedication, intellectual rigor, and an unwavering commitment to scientific inquiry.

What is quantitative research in STEM?

Quantitative research in this context is designed to improve our understanding of the science system’s workings, structural dependencies and dynamics.

What are good examples of quantitative research?

Surveys and questionnaires serve as common examples of quantitative research. They involve collecting data from many respondents and analyzing the results to identify trends, patterns

What are the 4 C’s in STEM?

They became known as the “Four Cs” — critical thinking, communication, collaboration, and creativity.

Similar Articles

Tips To Write An Assignment

13 Best Tips To Write An Assignment

Whenever the new semester starts, you will get a lot of assignment writing tasks. Now you enter the new academic…

How To Do Homework Fast

How To Do Homework Fast – 11 Tips To Do Homework Fast

Homework is one of the most important parts that have to be done by students. It has been around for…

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed .

CodeAvail

Best 151+ Quantitative Research Topics for STEM Students

Quantitative Research Topics for STEM Students

In today’s rapidly evolving world, STEM (Science, Technology, Engineering, and Mathematics) fields have gained immense significance. For STEM students, engaging in quantitative research is a pivotal aspect of their academic journey. Quantitative research involves the systematic collection and interpretation of numerical data to address research questions or test hypotheses. Choosing the right research topic is essential to ensure a successful and meaningful research endeavor. 

In this blog, we will explore 151+ quantitative research topics for STEM students. Whether you are an aspiring scientist, engineer, or mathematician, this comprehensive list will inspire your research journey. But we understand that the journey through STEM education and research can be challenging at times. That’s why we’re here to support you every step of the way with our Engineering Assignment Help service. 

What is Quantitative Research in STEM?

Table of Contents

Quantitative research is a scientific approach that relies on numerical data and statistical analysis to draw conclusions and make predictions. In STEM fields, quantitative research encompasses a wide range of methodologies, including experiments, surveys, and data analysis. The key characteristics of quantitative research in STEM include:

  • Data Collection: Systematic gathering of numerical data through experiments, observations, or surveys.
  • Statistical Analysis: Application of statistical techniques to analyze data and draw meaningful conclusions.
  • Hypothesis Testing: Testing hypotheses and theories using quantitative data.
  • Replicability: The ability to replicate experiments and obtain consistent results.
  • Generalizability: Drawing conclusions that can be applied to larger populations or phenomena.

Importance of Quantitative Research Topics for STEM Students

Quantitative research plays a pivotal role in STEM education and research for several reasons:

1. Empirical Evidence

It provides empirical evidence to support or refute scientific theories and hypotheses.

2. Data-Driven Decision-Making

STEM professionals use quantitative research to make informed decisions, from designing experiments to developing new technologies.

3. Innovation

It fuels innovation by providing data-driven insights that lead to the creation of new products, processes, and technologies.

4. Problem Solving

STEM students learn critical problem-solving skills through quantitative research, which are invaluable in their future careers.

5. Interdisciplinary Applications 

Quantitative research transcends STEM disciplines, facilitating collaboration and the tackling of complex, real-world problems.

Also Read: Google Scholar Research Topics

Quantitative Research Topics for STEM Students

Now, let’s explore important quantitative research topics for STEM students:

Biology and Life Sciences

Here are some quantitative research topics in biology and life science:

1. The impact of climate change on biodiversity.

2. Analyzing the genetic basis of disease susceptibility.

3. Studying the effectiveness of vaccines in preventing infectious diseases.

4. Investigating the ecological consequences of invasive species.

5. Examining the role of genetics in aging.

6. Analyzing the effects of pollution on aquatic ecosystems.

7. Studying the evolution of antibiotic resistance.

8. Investigating the relationship between diet and lifespan.

9. Analyzing the impact of deforestation on wildlife.

10. Studying the genetics of cancer development.

11. Investigating the effectiveness of various plant fertilizers.

12. Analyzing the impact of microplastics on marine life.

13. Studying the genetics of human behavior.

14. Investigating the effects of pollution on plant growth.

15. Analyzing the microbiome’s role in human health.

16. Studying the impact of climate change on crop yields.

17. Investigating the genetics of rare diseases.

Let’s get started with some quantitative research topics for stem students in chemistry:

1. Studying the properties of superconductors at different temperatures.

2. Analyzing the efficiency of various catalysts in chemical reactions.

3. Investigating the synthesis of novel polymers with unique properties.

4. Studying the kinetics of chemical reactions.

5. Analyzing the environmental impact of chemical waste disposal.

6. Investigating the properties of nanomaterials for drug delivery.

7. Studying the behavior of nanoparticles in different solvents.

8. Analyzing the use of renewable energy sources in chemical processes.

9. Investigating the chemistry of atmospheric pollutants.

10. Studying the properties of graphene for electronic applications.

11. Analyzing the use of enzymes in industrial processes.

12. Investigating the chemistry of alternative fuels.

13. Studying the synthesis of pharmaceutical compounds.

14. Analyzing the properties of materials for battery technology.

15. Investigating the chemistry of natural products for drug discovery.

16. Analyzing the effects of chemical additives on food preservation.

17. Investigating the chemistry of carbon capture and utilization technologies.

Here are some quantitative research topics in physics for stem students:

1. Investigating the behavior of subatomic particles in high-energy collisions.

2. Analyzing the properties of dark matter and dark energy.

3. Studying the quantum properties of entangled particles.

4. Investigating the dynamics of black holes and their gravitational effects.

5. Analyzing the behavior of light in different mediums.

6. Studying the properties of superfluids at low temperatures.

7. Investigating the physics of renewable energy sources like solar cells.

8. Analyzing the properties of materials at extreme temperatures and pressures.

9. Studying the behavior of electromagnetic waves in various applications.

10. Investigating the physics of quantum computing.

11. Analyzing the properties of magnetic materials for data storage.

12. Studying the behavior of particles in plasma for fusion energy research.

13. Investigating the physics of nanoscale materials and devices.

14. Analyzing the properties of materials for use in semiconductors.

15. Studying the principles of thermodynamics in energy efficiency.

16. Investigating the physics of gravitational waves.

17. Analyzing the properties of materials for use in quantum technologies.

Engineering

Let’s explore some quantitative research topics for stem students in engineering: 

1. Investigating the efficiency of renewable energy systems in urban environments.

2. Analyzing the impact of 3D printing on manufacturing processes.

3. Studying the structural integrity of materials in aerospace engineering.

4. Investigating the use of artificial intelligence in autonomous vehicles.

5. Analyzing the efficiency of water treatment processes in civil engineering.

6. Studying the impact of robotics in healthcare.

7. Investigating the optimization of supply chain logistics using quantitative methods.

8. Analyzing the energy efficiency of smart buildings.

9. Studying the effects of vibration on structural engineering.

10. Investigating the use of drones in agricultural practices.

11. Analyzing the impact of machine learning in predictive maintenance.

12. Studying the optimization of transportation networks.

13. Investigating the use of nanomaterials in electronic devices.

14. Analyzing the efficiency of renewable energy storage systems.

15. Studying the impact of AI-driven design in architecture.

16. Investigating the optimization of manufacturing processes using Industry 4.0 technologies.

17. Analyzing the use of robotics in underwater exploration.

Environmental Science

Here are some top quantitative research topics in environmental science for students:

1. Investigating the effects of air pollution on respiratory health.

2. Analyzing the impact of deforestation on climate change.

3. Studying the biodiversity of coral reefs and their conservation.

4. Investigating the use of remote sensing in monitoring deforestation.

5. Analyzing the effects of plastic pollution on marine ecosystems.

6. Studying the impact of climate change on glacier retreat.

7. Investigating the use of wetlands for water quality improvement.

8. Analyzing the effects of urbanization on local microclimates.

9. Studying the impact of oil spills on aquatic ecosystems.

10. Investigating the use of renewable energy in mitigating greenhouse gas emissions.

11. Analyzing the effects of soil erosion on agricultural productivity.

12. Studying the impact of invasive species on native ecosystems.

13. Investigating the use of bioremediation for soil cleanup.

14. Analyzing the effects of climate change on migratory bird patterns.

15. Studying the impact of land use changes on water resources.

16. Investigating the use of green infrastructure for urban stormwater management.

17. Analyzing the effects of noise pollution on wildlife behavior.

Computer Science

Let’s get started with some simple quantitative research topics for stem students:

1. Investigating the efficiency of machine learning algorithms for image recognition.

2. Analyzing the security of blockchain technology in financial transactions.

3. Studying the impact of quantum computing on cryptography.

4. Investigating the use of natural language processing in chatbots and virtual assistants.

5. Analyzing the effectiveness of cybersecurity measures in protecting sensitive data.

6. Studying the impact of algorithmic trading in financial markets.

7. Investigating the use of deep learning in autonomous robotics.

8. Analyzing the efficiency of data compression algorithms for large datasets.

9. Studying the impact of virtual reality in medical simulations.

10. Investigating the use of artificial intelligence in personalized medicine.

11. Analyzing the effectiveness of recommendation systems in e-commerce.

12. Studying the impact of cloud computing on data storage and processing.

13. Investigating the use of neural networks in predicting disease outbreaks.

14. Analyzing the efficiency of data mining techniques in customer behavior analysis.

15. Studying the impact of social media algorithms on user behavior.

16. Investigating the use of machine learning in natural language translation.

17. Analyzing the effectiveness of sentiment analysis in social media monitoring.

Mathematics

Let’s explore the quantitative research topics in mathematics for students:

1. Investigating the properties of prime numbers and their distribution.

2. Analyzing the behavior of chaotic systems using differential equations.

3. Studying the optimization of algorithms for solving complex mathematical problems.

4. Investigating the use of graph theory in network analysis.

5. Analyzing the properties of fractals in natural phenomena.

6. Studying the application of probability theory in risk assessment.

7. Investigating the use of numerical methods in solving partial differential equations.

8. Analyzing the properties of mathematical models for population dynamics.

9. Studying the optimization of algorithms for data compression.

10. Investigating the use of topology in data analysis.

11. Analyzing the behavior of mathematical models in financial markets.

12. Studying the application of game theory in strategic decision-making.

13. Investigating the use of mathematical modeling in epidemiology.

14. Analyzing the properties of algebraic structures in coding theory.

15. Studying the optimization of algorithms for image processing.

16. Investigating the use of number theory in cryptography.

17. Analyzing the behavior of mathematical models in climate prediction.

Earth Sciences

Here are some quantitative research topics for stem students in earth science:

1. Investigating the impact of volcanic eruptions on climate patterns.

2. Analyzing the behavior of earthquakes along tectonic plate boundaries.

3. Studying the geomorphology of river systems and erosion.

4. Investigating the use of remote sensing in monitoring wildfires.

5. Analyzing the effects of glacier melt on sea-level rise.

6. Studying the impact of ocean currents on weather patterns.

7. Investigating the use of geothermal energy in renewable power generation.

8. Analyzing the behavior of tsunamis and their destructive potential.

9. Studying the impact of soil erosion on agricultural productivity.

10. Investigating the use of geological data in mineral resource exploration.

11. Analyzing the effects of climate change on coastal erosion.

12. Studying the geomagnetic field and its role in navigation.

13. Investigating the use of radar technology in weather forecasting.

14. Analyzing the behavior of landslides and their triggers.

15. Studying the impact of groundwater depletion on aquifer systems.

16. Investigating the use of GIS (Geographic Information Systems) in land-use planning.

17. Analyzing the effects of urbanization on heat island formation.

Health Sciences and Medicine

Here are some quantitative research topics for stem students in health science and medicine:

1. Investigating the effectiveness of telemedicine in improving healthcare access.

2. Analyzing the impact of personalized medicine in cancer treatment.

3. Studying the epidemiology of infectious diseases and their spread.

4. Investigating the use of wearable devices in monitoring patient health.

5. Analyzing the effects of nutrition and exercise on metabolic health.

6. Studying the impact of genetics in predicting disease susceptibility.

7. Investigating the use of artificial intelligence in medical diagnosis.

8. Analyzing the behavior of pharmaceutical drugs in clinical trials.

9. Studying the effectiveness of mental health interventions in schools.

10. Investigating the use of gene editing technologies in treating genetic disorders.

11. Analyzing the properties of medical imaging techniques for early disease detection.

12. Studying the impact of vaccination campaigns on public health.

13. Investigating the use of regenerative medicine in tissue repair.

14. Analyzing the behavior of pathogens in antimicrobial resistance.

15. Studying the epidemiology of chronic diseases like diabetes and heart disease.

16. Investigating the use of bioinformatics in genomics research.

17. Analyzing the effects of environmental factors on health outcomes.

Quantitative research is the backbone of STEM fields, providing the tools and methodologies needed to explore, understand, and innovate in the world of science and technology . As STEM students, embracing quantitative research not only enhances your analytical skills but also equips you to address complex real-world challenges. With the extensive list of 155+ quantitative research topics for stem students provided in this blog, you have a starting point for your own STEM research journey. Whether you’re interested in biology, chemistry, physics, engineering, or any other STEM discipline, there’s a wealth of quantitative research topics waiting to be explored. So, roll up your sleeves, grab your lab coat or laptop, and embark on your quest for knowledge and discovery in the exciting world of STEM.

I hope you enjoyed this blog post about quantitative research topics for stem students.

Related Posts

8 easiest programming language to learn for beginners.

There are so many programming languages you can learn. But if you’re looking to start with something easier. We bring to you a list of…

10 Online Tutoring Help Benefits

Do you need a computer science assignment help? Get the best quality assignment help from computer science tutors at affordable prices. They always presented to help…

Quantitative Research Topics for STEM Students

60+ Best Quantitative Research Topics for STEM Students: Dive into Data

Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future.

Unleash the power of quantitative research and dive into uncharted territories that go beyond academics, fostering innovation and discovery.

Hey, you future scientists, tech wizards, engineering maestros, and math superheroes – gather ’round! We’re about to dive headfirst into the rad world of quantitative research topics, tailor-made for the rockstars of STEM.

In the crazy universe of science, technology, engineering, and math (STEM), quantitative research isn’t just a nerdy term—it’s your VIP pass to an interstellar adventure. Picture this: you’re strapping into a rocket ship, zooming through the cosmos, and decoding the universe’s coolest secrets, all while juggling numbers like a cosmic DJ.

But here’s the real scoop: finding the ultimate research topic is like picking the juiciest star in the galaxy. It’s about stumbling upon something so mind-blowing that you can’t resist plunging into the data. It’s about choosing questions that make your STEM-loving heart do the cha-cha.

In this guide, we’re not just your sidekicks; we’re your partners in crime through the vast jungle of quantitative research topics. Whether you’re a rookie gearing up for your first lab escapade or a seasoned explorer hunting for a new thrill, think of this article as your treasure map, guiding you to the coolest STEM discoveries.

From the teeny wonders of biology to the brain-bending puzzles of physics, the cutting-edge vibes of engineering, and the downright gorgeous dance of mathematics – we’ve got your back.

So, buckle up, fellow STEM enthusiasts! We’re setting sail on a cosmic adventure through the groovy galaxy of quantitative research topics. Get ready to unravel the secrets of science and tech, one sizzling digit at a time.

Stick around for a ride that’s part data, part disco, and all STEM swagger!

Table of Contents

Benefits of Choosing Quantitative Research

Embarking on the quantitative research journey is like stepping into a treasure trove of benefits across a spectrum of fields. Let’s dive into the exciting advantages that make choosing quantitative research a game-changer:

Numbers That Speak Louder

Quantitative research deals in cold, hard numbers. This means your data isn’t just informative; it’s objective, measurable, and has a voice of its own.

Statistical Swagger

Crunching numbers isn’t just for show. With quantitative research, statistical tools add a touch of pizzazz, boosting the validity of your findings and turning your study into a credible performance.

For the Masses

Quantitative research loves a crowd. Larger sample sizes mean your discoveries aren’t just for the lucky few – they’re for everyone. It’s the science of sharing the knowledge wealth.

Data Showdown

Ready for a duel between variables? Quantitative research sets the stage for epic battles, letting you compare, contrast, and uncover cause-and-effect relationships in the data arena.

Structured and Ready to Roll

Think of quantitative research like a well-organized party. It follows a structured plan, making replication a breeze. Because who doesn’t love a party that’s easy to recreate?

Data Efficiency Dance

Efficiency is the name of the game. Surveys, experiments, and structured observations make data collection a dance – choreographed, smooth, and oh-so-efficient.

Data Clarity FTW

No decoding needed here. Quantitative research delivers crystal-clear results. It’s like reading a good book without the need for interpretation – straightforward and to the point.

Spotting Trends Like a Pro

Ever wish you had a crystal ball for trends? Quantitative analysis is the next best thing. It’s like having a trend-spotting superpower, revealing patterns that might have otherwise stayed hidden.

Bias Be Gone

Quantitative research takes bias out of the equation. Systematic data collection and statistical wizardry reduce researcher bias, leaving you with results that are as unbiased as a judge at a talent show.

Key Components of a Quantitative Research Study

Launching into a quantitative research study is like embarking on a thrilling quest, and guess what? You’re the hero of this research adventure! Let’s unravel the exciting components that make your study a blockbuster:

Quest-Starter: Research Question or Hypothesis

It’s your “once upon a time.” Kick off your research journey with a bang by crafting a captivating research question or hypothesis. This is the spark that ignites your curiosity.

Backstory Bonanza: Literature Review

Think of it as your research Netflix binge. Dive into existing literature for the backstory. It’s not just research – it’s drama, plot twists, and the foundation for your epic tale.

Blueprint Brilliance: Research Design

Time to draw up the plans for your study castle. Choose your research design – is it a grand experiment or a cunning observational scheme? Your design is the architectural genius behind your research.

Casting Call: Population and Sample

Who’s in your star-studded lineup? Define your dream cast – your target population – and then handpick a sample that’s ready for the research red carpet.

Gear Up: Data Collection Methods

Choose your research tools wisely – surveys, experiments, or maybe a bit of detective work. Your methods are like the gadgets in a spy movie, helping you collect the data treasures.

The Numbers Game: Variables and Measures

What’s in the spotlight? Identify your main characters – independent and dependent variables. Then, sprinkle in some measures to add flair and precision to your study.

Magic Analysis Wand: Data Analysis Techniques

Enter the wizardry zone! Pick your magic wand – statistical methods, tests, or software – and watch as it unravels the mysteries hidden in your data.

Ethical Superhero Cape: Ethical Considerations

Every hero needs a moral compass. Clearly outline how you’ll be the ethical superhero of your study, protecting the well-being and secrets of your participants.

Grand Finale: Results and Findings

It’s showtime! Showcase your results like the grand finale of a fireworks display. Tables, charts, and statistical dazzle – let your findings steal the spotlight.

Wrap-Up Party: Conclusion and Implications

Bring out the confetti! Summarize your findings, discuss their VIP status in the research world, and hint at the afterparty – how your results shape the future.

Behind-the-Scenes Blooper Reel: Limitations and Future Research

No Hollywood film is perfect. Share the bloopers – the limitations of your study – and hint at the sequel with ideas for future research. It’s all part of the cinematic journey.

Roll Credits: References

Give a shout-out to the supporting cast! Cite your sources – it’s the credits that add credibility to your blockbuster.

Bonus Scene: Appendix

Think of it as the post-credits scene. Tuck in any extra goodies – surveys, questionnaires, or behind-the-scenes material – for those eager to dive deeper into your research universe.

By weaving these storylines together, your quantitative research study becomes a cinematic masterpiece, leaving a lasting impact on the grand stage of academia. Happy researching, hero!

Quantitative Research Topics for STEM Students

Check out the best quantitative research topics for STEM students:-

  • Investigating the Effects of Different Soil pH Levels on Plant Growth.
  • Analyzing the Impact of Pesticide Exposure on Bee Populations.
  • Studying the Genetic Variability in Endangered Species.
  • Quantifying the Relationship Between Temperature and Microbial Growth in Water.
  • Analyzing the Effects of Ocean Acidification on Coral Reefs.
  • Investigating the Correlation Between Pollinator Diversity and Crop Yield.
  • Studying the Role of Gut Microbiota in Human Health and Disease.
  • Quantifying the Impact of Antibiotics on Soil Microbial Communities.
  • Analyzing the Effects of Light Pollution on Nocturnal Animal Behavior.
  • Investigating the Relationship Between Altitude and Plant Adaptations in Mountain Ecosystems.
  • Measuring the Speed of Light Using Interferometry Techniques.
  • Investigating the Quantum Properties of Photons in Quantum Computing.
  • Analyzing the Factors Affecting Magnetic Field Strength in Electromagnets.
  • Studying the Behavior of Superfluids at Ultra-Low Temperatures.
  • Quantifying the Efficiency of Energy Transfer in Photovoltaic Cells.
  • Analyzing the Properties of Quantum Dots for Future Display Technologies.
  • Investigating the Behavior of Particles in High-Energy Particle Accelerators.
  • Studying the Effects of Gravitational Waves on Space-Time.
  • Quantifying the Frictional Forces on Objects at Different Surfaces.
  • Analyzing the Characteristics of Dark Matter and Dark Energy in the Universe.

Engineering

  • Optimizing the Design of Wind Turbine Blades for Maximum Efficiency.
  • Investigating the Use of Smart Materials in Structural Engineering.
  • Analyzing the Impact of 3D Printing on Prototyping in Product Design.
  • Studying the Behavior of Composite Materials Under Extreme Temperatures.
  • Evaluating the Efficiency of Water Treatment Plants in Removing Contaminants.
  • Investigating the Aerodynamics of Drones for Improved Flight Control.
  • Quantifying the Effects of Traffic Flow on Roadway Maintenance.
  • Analyzing the Impact of Vibration Damping in Building Structures.
  • Studying the Mechanical Properties of Biodegradable Polymers in Medical Devices.
  • Investigating the Use of Artificial Intelligence in Autonomous Robotic Systems.

Mathematics

  • Exploring Chaos Theory and Its Applications in Nonlinear Systems.
  • Modeling the Spread of Infectious Diseases in Population Dynamics.
  • Analyzing Data Mining Techniques for Predictive Analytics in Business.
  • Studying the Mathematics of Cryptography Algorithms for Data Security.
  • Quantifying the Patterns in Stock Market Price Movements Using Time Series Analysis.
  • Investigating the Applications of Fractal Geometry in Computer Graphics.
  • Analyzing the Behavior of Differential Equations in Climate Modeling.
  • Studying the Optimization of Supply Chain Networks Using Linear Programming.
  • Investigating the Mathematical Concepts Behind Machine Learning Algorithms.
  • Quantifying the Patterns of Prime Numbers in Number Theory.
  • Investigating the Chemical Mechanisms Behind Enzyme Catalysis.
  • Analyzing the Thermodynamic Properties of Chemical Reactions.
  • Studying the Kinetics of Chemical Reactions in Different Solvents.
  • Quantifying the Concentration of Pollutants in Urban Air Quality.
  • Evaluating the Effectiveness of Antioxidants in Food Preservation.
  • Investigating the Electrochemical Properties of Batteries for Energy Storage.
  • Studying the Behavior of Nanomaterials in Drug Delivery Systems.
  • Analyzing the Chemical Composition of Exoplanet Atmospheres Using Spectroscopy.
  • Quantifying Heavy Metal Contamination in Soil and Water Sources.
  • Investigating the Correlation Between Chemical Exposure and Human Health.

Computer Science

  • Analyzing Machine Learning Algorithms for Natural Language Processing.
  • Investigating Quantum Computing Algorithms for Cryptography Applications.
  • Studying the Efficiency of Data Compression Methods for Big Data Storage.
  • Quantifying Cybersecurity Threats and Vulnerabilities in IoT Devices.
  • Evaluating the Impact of Cloud Computing on Distributed Systems.
  • Investigating the Use of Artificial Intelligence in Autonomous Vehicles.
  • Analyzing the Behavior of Neural Networks in Deep Learning Applications.
  • Studying the Performance of Blockchain Technology in Supply Chain Management.
  • Quantifying User Behavior in Social Media Analytics.
  • Investigating Quantum Machine Learning for Enhanced Data Processing.

These additional project ideas provide a diverse range of opportunities for STEM students to engage in quantitative research and explore various aspects of their respective fields. Each project offers a unique avenue for discovery and contribution to the world of science and technology.

What is an example of a quantitative research?

Quantitative research is a powerful investigative approach, wielding numbers to shed light on intricate relationships and phenomena. Let’s dive into an example of quantitative research to understand its workings:

Research Question

What is the correlation between the time students devote to studying and their academic grades?

Students who invest more time in studying are likely to achieve higher grades.

Research Design

Imagine a researcher embarking on a journey within a high school. They distribute surveys to students, inquiring about their weekly study hours and their corresponding grades in core subjects.

Data Analysis

Equipped with statistical tools, our researcher scrutinizes the collected data. Lo and behold, a significant positive correlation emerges—students who dedicate more time to studying generally earn higher grades.

With data as their guide, the researcher concludes that indeed, a relationship exists between study time and academic grades. The more time students commit to their studies, the brighter their academic stars tend to shine.

This example merely scratches the surface of quantitative research’s potential. It can delve into an extensive array of subjects and investigate complex hypotheses. Here are a few more examples:

  • Assessing a New Drug’s Effectiveness: Quantifying the impact of a  novel medication  in treating a specific illness.
  • Socioeconomic Status and Crime Rates: Investigating the connection between economic conditions and criminal activity.
  • Analyzing the Influence of an Advertising Campaign on Sales: Measuring the effectiveness of a marketing blitz on product purchases.
  • Factors Shaping Customer Satisfaction: Using data to pinpoint the elements contributing to customer contentment.
  • Government Policies and Employment Rates: Evaluating the repercussions of new governmental regulations on job opportunities.

Quantitative research serves as a potent beacon, illuminating the complexities of our world through data-driven inquiry. Researchers harness its might to collect, analyze, and draw valuable conclusions about a vast spectrum of phenomena. It’s a vital tool for unraveling the intricacies of our universe. 

As we bid adieu to our whirlwind tour of quantitative research topics tailor-made for the STEM dreamers, it’s time to soak in the vast horizons that science, technology, engineering, and mathematics paint for us.

We’ve danced through the intricate tango of poverty and crime, peeked into the transformative realm of cutting-edge technologies, and unraveled the captivating puzzles of quantitative research. But these aren’t just topics; they’re open invitations to dive headfirst into the uncharted seas of knowledge.

To you, the STEM trailblazers, these research ideas aren’t mere academic pursuits. They’re portals to curiosity, engines of innovation, and blueprints for shaping the future of our world. They’re the sparks that illuminate the trail leading to discovery.

As you set sail on your research odyssey, remember that quantitative research isn’t just about unlocking answers—it’s about nurturing that profound sense of wonder, igniting innovation, and weaving your unique thread into the fabric of human understanding.

Whether you’re stargazing, decoding the intricate language of genes, engineering marvels, or tackling global challenges head-on, realize that your STEM and quantitative research journey is a perpetual adventure.

May your questions be audacious, your data razor-sharp, and your discoveries earth-shattering. Keep that innate curiosity alive, keep exploring, and let the spirit of STEM be your North Star, guiding you towards a future that’s not just brighter but brilliantly enlightened.

And with that, fellow adventurers, go forth, embrace the unknown, and let your journey in STEM be the epic tale that reshapes the narrative of tomorrow!

Frequently Asked Questions

How can i ensure the ethical conduct of my quantitative research project.

To ensure ethical conduct, obtain informed consent from participants, maintain data confidentiality, and adhere to ethical guidelines established by your institution and professional associations.

Are there any software tools recommended for data analysis in STEM research?

Yes, there are several widely used software tools for data analysis in STEM research, including R, Python, MATLAB, and SPSS. The choice of software depends on your specific research needs and familiarity with the tools.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

edeuphoria

Best 101 Quantitative Research Topics for STEM Students

Are you a STEM (Science, Technology, Engineering, and Mathematics) student looking for exciting research topics? Well, you’ve come to the right place! Quantitative research can be both challenging and rewarding, but finding the right topic is the first step to success. In this blog, we’ve gathered 101 quantitative research topics in the easiest language possible to help you kickstart your research journey.

101 Quantitative Research Topics for STEM Students

Biology research topics.

  • Effect of Temperature on Enzyme Activity: Investigate how different temperatures affect the efficiency of enzymes in biological reactions.
  • The Impact of Pollution on Aquatic Ecosystems: Analyze the correlation between pollution levels and the health of aquatic ecosystems.
  • Genetic Variability in Human Populations: Study the genetic diversity within different human populations and its implications.
  • Bacterial Resistance to Antibiotics: Examine how bacteria develop resistance to antibiotics and potential solutions.
  • Photosynthesis Efficiency in Different Light Conditions: Measure photosynthesis rates in various light conditions to understand plant adaptation.
  • Effect of pH Levels on Seed Germination: Investigate how different pH levels affect the germination of seeds.
  • Diversity of Insect Species in Urban vs. Rural Areas: Compare insect species diversity in urban and rural environments.
  • The Impact of Exercise on Heart Rate: Study how exercise affects heart rate and overall cardiovascular health.
  • Plant Growth in Response to Different Fertilizers: Analyze the growth of plants using different types of fertilizers.
  • Genetic Basis of Inherited Diseases: Explore the genetic mutations responsible for inherited diseases.

Chemistry Research Topics

  • Chemical Analysis of Water Sources: Investigate the composition of water from different sources and its suitability for consumption.
  • Stoichiometry of Chemical Reactions: Study the relationships between reactants and products in chemical reactions.
  • Kinetics of Chemical Reactions: Examine the speed and mechanisms of various chemical reactions.
  • The Impact of Temperature on Chemical Equilibrium: Analyze how temperature influences chemical equilibrium in reversible reactions.
  • Quantifying Air Pollution Levels: Measure air pollution components and their effects on human health.
  • Analysis of Food Additives: Investigate the safety and effects of common food additives.
  • Chemical Composition of Different Soils: Study the chemical properties of soils from different regions.
  • Electrochemical Cell Efficiency: Examine the efficiency of electrochemical cells in energy storage.
  • Quantitative Analysis of Drugs in Pharmaceuticals: Develop methods to quantify drug concentrations in pharmaceutical products.
  • Chemical Analysis of Renewable Energy Sources: Investigate the chemical composition of renewable energy sources like biofuels and solar cells.

Physics Research Topics

  • Quantum Mechanics and Entanglement: Explore the mysterious world of quantum entanglement and its applications.
  • The Physics of Black Holes: Study the properties and behavior of black holes in the universe.
  • Analysis of Superconductors: Investigate the phenomenon of superconductivity and its practical applications.
  • The Doppler Effect and its Applications: Explore the Doppler effect in various contexts, such as in astronomy and medicine.
  • Nanotechnology and Its Future: Analyze the potential of nanotechnology in various scientific fields.
  • The Behavior of Light Waves: Study the properties and behaviors of light waves, including diffraction and interference.
  • Quantifying Friction in Mechanical Systems: Measure and analyze friction in mechanical systems for engineering applications.
  • The Physics of Renewable Energy: Investigate the physics behind renewable energy sources like wind turbines and solar panels.
  • Particle Accelerators and High-Energy Physics: Explore the world of particle physics and particle accelerators.
  • Astrophysics and Dark Matter: Analyze the mysteries of dark matter and its role in the universe.

Mathematics Research Topics

  • Prime Number Distribution Patterns: Study the distribution of prime numbers and look for patterns.
  • Graph Theory and Network Analysis: Analyze real-world networks using graph theory techniques.
  • Optimization of Algorithms: Optimize algorithms for faster computation and efficiency.
  • Statistical Analysis of Economic Data: Apply statistical methods to analyze economic trends and data.
  • Mathematical Modeling of Disease Spread: Model the spread of diseases using mathematical equations.
  • Game Theory and Decision Making: Explore decision-making processes in strategic games.
  • Cryptographic Algorithms and Security: Study cryptographic algorithms and their role in data security.
  • Machine Learning and Predictive Analytics: Apply machine learning techniques to predict future events.
  • Number Theory and Cryptography: Investigate the mathematical foundations of cryptography.
  • Mathematics in Art and Design: Explore the intersection of mathematics and art through patterns and fractals.

Engineering Research Topics

  • Structural Analysis of Bridges: Evaluate the structural integrity of different types of bridges.
  • Renewable Energy Integration in Smart Grids: Study the integration of renewable energy sources in smart grid systems.
  • Materials Science and Composite Materials: Analyze the properties and applications of composite materials.
  • Robotics and Automation in Manufacturing: Explore the role of robotics in modern manufacturing processes.
  • Aerodynamics of Aircraft Design: Investigate the aerodynamics principles behind aircraft design.
  • Traffic Flow Analysis: Analyze traffic patterns and propose solutions for congestion.
  • Environmental Impact of Transportation: Study the environmental effects of various transportation methods.
  • Civil Engineering and Urban Planning: Explore solutions for urban development and infrastructure planning.
  • Biomechanics and Prosthetics: Study the mechanics of the human body and design prosthetic devices.
  • Environmental Engineering and Water Treatment: Investigate methods for efficient water treatment and pollution control.

Computer Science Research Topics

  • Machine Learning for Image Recognition: Develop algorithms for image recognition using machine learning.
  • Cybersecurity and Intrusion Detection: Study methods to detect and prevent cyber intrusions.
  • Natural Language Processing for Sentiment Analysis: Analyze sentiment in text data using natural language processing techniques.
  • Big Data Analytics and Predictive Modeling: Apply big data analytics to predict trends and make data-driven decisions.
  • Artificial Intelligence in Healthcare: Explore the applications of AI in diagnosing diseases and patient care.
  • Computer Vision and Autonomous Vehicles: Study computer vision techniques for autonomous vehicle navigation.
  • Quantum Computing and Cryptography: Investigate the potential of quantum computing in breaking current cryptographic systems.
  • Social Media Data Analysis: Analyze social media data to understand trends and user behavior.
  • Software Development for Accessibility: Develop software solutions for individuals with disabilities.
  • Virtual Reality and Simulation: Explore the use of virtual reality in simulations and training.

Environmental Science Research Topics

  • Climate Change and Sea-Level Rise: Study the effects of climate change on sea-level rise in coastal areas.
  • Ecosystem Restoration and Biodiversity: Explore methods to restore and conserve ecosystems and biodiversity.
  • Air Quality Monitoring in Urban Areas: Analyze air quality in urban environments and its health implications.
  • Sustainable Agriculture and Crop Yield: Investigate sustainable farming practices for improved crop yield.
  • Water Resource Management: Study methods for efficient water resource management and conservation.
  • Waste Management and Recycling: Analyze waste management strategies and recycling programs.
  • Natural Disaster Prediction and Mitigation: Develop models for predicting and mitigating natural disasters.
  • Renewable Energy and Environmental Impact: Investigate the environmental impact of renewable energy sources.
  • Climate Modeling and Predictions: Study climate models and make predictions about future climate changes.
  • Pollution Control and Remediation Techniques: Explore methods to control and remediate various types of pollution.

Psychology Research Topics

  • Effects of Social Media on Mental Health: Analyze the relationship between social media usage and mental health.
  • Cognitive Development in Children: Study cognitive development in children and its factors.
  • The Impact of Stress on Academic Performance: Analyze how stress affects academic performance.
  • Gender Differences in Decision-Making: Investigate gender-related variations in decision-making processes.
  • Psychological Factors in Addiction: Study the psychological factors contributing to addiction.
  • Perception and Memory in Aging: Explore changes in perception and memory as people age.
  • Cross-Cultural Psychological Studies: Compare psychological phenomena across different cultures.
  • Positive Psychology and Well-Being: Investigate factors contributing to overall well-being and happiness.
  • Emotional Intelligence and Leadership: Study the relationship between emotional intelligence and effective leadership.
  • Psychological Effects of Virtual Reality: Analyze the psychological impact of immersive virtual reality experiences.

Earth Science Research Topics

  • Volcanic Activity and Predictions: Study volcanic eruptions and develop prediction models.
  • Plate Tectonics and Earthquakes: Analyze the movement of tectonic plates and earthquake patterns.
  • Geomorphology and Landscape Evolution: Investigate the processes shaping Earth’s surface.
  • Glacial Retreat and Climate Change: Study the retreat of glaciers and its connection to climate change.
  • Mineral Exploration and Resource Management: Explore methods for mineral resource exploration and sustainable management.
  • Meteorology and Weather Forecasting: Analyze weather patterns and improve weather forecasting accuracy.
  • Oceanography and Marine Life: Study marine ecosystems, ocean currents, and their impact on marine life.
  • Soil Erosion and Conservation: Investigate soil erosion processes and conservation techniques.
  • Remote Sensing and Earth Observation: Use remote sensing technology to monitor Earth’s surface changes.
  • Geographic Information Systems (GIS) Applications: Apply GIS technology for various geographical analyses.

Materials Science Research Topics

  • Nanomaterials for Drug Delivery: Investigate the use of nanomaterials for targeted drug delivery.
  • Superconducting Materials and Energy Efficiency: Study materials with superconducting properties for energy applications.
  • Advanced Composite Materials for Aerospace: Analyze advanced composites for lightweight aerospace applications.
  • Solar Cell Efficiency Improvement: Investigate materials for more efficient solar cell technology .
  • Biomaterials and Medical Implants: Explore materials used in medical implants and their biocompatibility.
  • Smart Materials for Electronics: Study materials that can change their properties in response to external stimuli.
  • Materials for Energy Storage: Analyze materials for improved energy storage solutions.
  • Quantum Dots in Display Technology: Investigate the use of quantum dots in display technology.
  • Materials for 3D Printing: Explore materials suitable for 3D printing in various industries.
  • Materials for Water Purification: Study materials used in water purification processes.
  • Data Analysis of Social Media Trends: Explore the quantitative analysis of social media trends to understand their impact on society and marketing strategies.

There you have it—101 quantitative research topics for STEM students! Remember that the key to a successful research project is choosing a topic that genuinely interests you. Whether you’re passionate about biology, chemistry, physics, mathematics, engineering, computer science, environmental science, psychology, or earth science, there’s a quantitative research topic waiting for you to explore. So, roll up your sleeves, gather your data, and embark on your research journey with enthusiasm.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Write my thesis
  • Thesis writers
  • Buy thesis papers
  • Bachelor thesis
  • Master's thesis
  • Thesis editing services
  • Thesis proofreading services
  • Buy a thesis online
  • Write my dissertation
  • Dissertation proposal help
  • Pay for dissertation
  • Custom dissertation
  • Dissertation help online
  • Buy dissertation online
  • Cheap dissertation
  • Dissertation editing services
  • Write my research paper
  • Buy research paper online
  • Pay for research paper
  • Research paper help
  • Order research paper
  • Custom research paper
  • Cheap research paper
  • Research papers for sale
  • Thesis subjects
  • How It Works

55 Brilliant Research Topics For STEM Students

Research Topics For STEM Students

Primarily, STEM is an acronym for Science, Technology, Engineering, and Mathematics. It’s a study program that weaves all four disciplines for cross-disciplinary knowledge to solve scientific problems. STEM touches across a broad array of subjects as STEM students are required to gain mastery of four disciplines.

As a project-based discipline, STEM has different stages of learning. The program operates like other disciplines, and as such, STEM students embrace knowledge depending on their level. Since it’s a discipline centered around innovation, students undertake projects regularly. As a STEM student, your project could either be to build or write on a subject. Your first plan of action is choosing a topic if it’s written. After selecting a topic, you’ll need to determine how long a thesis statement should be .

Given that topic is essential to writing any project, this article focuses on research topics for STEM students. So, if you’re writing a STEM research paper or write my research paper , below are some of the best research topics for STEM students.

List of Research Topics For STEM Students

Quantitative research topics for stem students, qualitative research topics for stem students, what are the best experimental research topics for stem students, non-experimental research topics for stem students, capstone research topics for stem students, correlational research topics for stem students, scientific research topics for stem students, simple research topics for stem students, top 10 research topics for stem students, experimental research topics for stem students about plants, research topics for grade 11 stem students, research topics for grade 12 stem students, quantitative research topics for stem high school students, survey research topics for stem students, interesting and informative research topics for senior high school stem students.

Several research topics can be formulated in this field. They cut across STEM science, engineering, technology, and math. Here is a list of good research topics for STEM students.

  • The effectiveness of online learning over physical learning
  • The rise of metabolic diseases and their relationship to increased consumption
  • How immunotherapy can improve prognosis in Covid-19 progression

For your quantitative research in STEM, you’ll need to learn how to cite a thesis MLA for the topic you’re choosing. Below are some of the best quantitative research topics for STEM students.

  • A study of the effect of digital technology on millennials
  • A futuristic study of a world ruled by robotics
  • A critical evaluation of the future demand in artificial intelligence

There are several practical research topics for STEM students. However, if you’re looking for qualitative research topics for STEM students, here are topics to explore.

  • An exploration into how microbial factories result in the cause shortage in raw metals
  • An experimental study on the possibility of older-aged men passing genetic abnormalities to children
  • A critical evaluation of how genetics could be used to help humans live healthier and longer.
Experimental research in STEM is a scientific research methodology that uses two sets of variables. They are dependent and independent variables that are studied under experimental research. Experimental research topics in STEM look into areas of science that use data to derive results.

Below are easy experimental research topics for STEM students.

  • A study of nuclear fusion and fission
  • An evaluation of the major drawbacks of Biotechnology in the pharmaceutical industry
  • A study of single-cell organisms and how they’re capable of becoming an intermediary host for diseases causing bacteria

Unlike experimental research, non-experimental research lacks the interference of an independent variable. Non-experimental research instead measures variables as they naturally occur. Below are some non-experimental quantitative research topics for STEM students.

  • Impacts of alcohol addiction on the psychological life of humans
  • The popularity of depression and schizophrenia amongst the pediatric population
  • The impact of breastfeeding on the child’s health and development

STEM learning and knowledge grow in stages. The older students get, the more stringent requirements are for their STEM research topic. There are several capstone topics for research for STEM students .

Below are some simple quantitative research topics for stem students.

  • How population impacts energy-saving strategies
  • The application of an Excel table processor capabilities for cost calculation
  •  A study of the essence of science as a sphere of human activity

Correlations research is research where the researcher measures two continuous variables. This is done with little or no attempt to control extraneous variables but to assess the relationship. Here are some sample research topics for STEM students to look into bearing in mind how to cite a thesis APA style for your project.

  • Can pancreatic gland transplantation cure diabetes?
  • A study of improved living conditions and obesity
  • An evaluation of the digital currency as a valid form of payment and its impact on banking and economy

There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students.

  • A study of protease inhibitor and how it operates
  • A study of how men’s exercise impacts DNA traits passed to children
  • A study of the future of commercial space flight

If you’re looking for a simple research topic, below are easy research topics for STEM students.

  • How can the problem of Space junk be solved?
  • Can meteorites change our view of the universe?
  • Can private space flight companies change the future of space exploration?

For your top 10 research topics for STEM students, here are interesting topics for STEM students to consider.

  • A comparative study of social media addiction and adverse depression
  • The human effect of the illegal use of formalin in milk and food preservation
  • An evaluation of the human impact on the biosphere and its results
  • A study of how fungus affects plant growth
  • A comparative study of antiviral drugs and vaccine
  • A study of the ways technology has improved medicine and life science
  • The effectiveness of Vitamin D among older adults for disease prevention
  • What is the possibility of life on other planets?
  • Effects of Hubble Space Telescope on the universe
  • A study of important trends in medicinal chemistry research

Below are possible research topics for STEM students about plants:

  • How do magnetic fields impact plant growth?
  • Do the different colors of light impact the rate of photosynthesis?
  • How can fertilizer extend plant life during a drought?

Below are some examples of quantitative research topics for STEM students in grade 11.

  • A study of how plants conduct electricity
  • How does water salinity affect plant growth?
  • A study of soil pH levels on plants

Here are some of the best qualitative research topics for STEM students in grade 12.

  • An evaluation of artificial gravity and how it impacts seed germination
  • An exploration of the steps taken to develop the Covid-19 vaccine
  • Personalized medicine and the wave of the future

Here are topics to consider for your STEM-related research topics for high school students.

  • A study of stem cell treatment
  • How can molecular biological research of rare genetic disorders help understand cancer?
  • How Covid-19 affects people with digestive problems

Below are some survey topics for qualitative research for stem students.

  • How does Covid-19 impact immune-compromised people?
  • Soil temperature and how it affects root growth
  • Burned soil and how it affects seed germination

Here are some descriptive research topics for STEM students in senior high.

  • The scientific information concept and its role in conducting scientific research
  • The role of mathematical statistics in scientific research
  • A study of the natural resources contained in oceans

Final Words About Research Topics For STEM Students

STEM topics cover areas in various scientific fields, mathematics, engineering, and technology. While it can be tasking, reducing the task starts with choosing a favorable topic. If you require external assistance in writing your STEM research, you can seek professional help from our experts.

Leave a Reply Cancel reply

Hire Article Writer

199+ Quantitative Research Topics For STEM Students to Try Now

Discover engaging Quantitative Research Topics for STEM Students – Explore the world of science, tech, engineering, and math with simplified, fascinating ideas.

Have you ever wondered how science, tech, and math shape our world? You’re not alone! STEM (Science, Technology, Engineering, and Math) is like a treasure chest of discoveries. And the best part? You can be part of it!

Our blog is your path to the exciting world of STEM. We aim to make it interesting, enjoyable, and simple to comprehend. No tricky words, no fancy talk – just simple and exciting stuff.

In this blog, we’ve collected the best quantitative research topics for stem students. Scientists use these numbers to answer questions, and it’s cool!

Do you enjoy learning? We’re here to spark your curiosity and hold your interest.

From exploring nature to solving tech puzzles and uncovering the universe’s secrets, we’ve got it all. Think of it as an adventure, with each topic leading to great discoveries.

So, get ready to dive into STEM.  Let’s learn and explore together, one topic at a time. Your STEM journey starts now!

What Is Quantitative Research? 

Quantitative research involves gathering and studying numerical data. It tries to measure things, count them, or put them into classes that can be counted. For example, a researcher might ask 100 people their age and gender. They would count how many men and women are present and work out the average age.

Quantitative research gives us numbers that help us see patterns, test theories, and predict things. The goal is to be accurate and get precise, measurable results that can be summarized numerically. This type of research aims to remove personal biases.

Tips To Choose Quantitative Research Topics For STEM Students

First, let’s find how to quantitative research topics for STEM students, and then we will move on to the project ideas.

Choose a Topic That Interests You

Picking a research topic you’re genuinely curious or passionate about makes the research process so much more engaging and rewarding. Choosing something that excites you motivates you to push through the hard work.

Look for Gaps in Existing Research

Review academic journals and existing research to find gaps where further study is needed. Look for topics where findings are contradictory or inconclusive. New research could help resolve differences or offer additional insights. Exploring open questions interests the research community.

Consider Real-World Applications

Consider how quantitative research could inform products, services, policies, and processes to improve them. Research with practical implications beyond academia tends to be impactful and worthwhile.

Ensure Quantitative Methods Apply

Not all topics lend themselves well to quantitative analysis. Assess whether statistical numerical methods will work for your research question. If not, qualitative methods may be better.

Find a Unique Angle

Avoid research topics that have already been extensively studied from every angle. Look for a creative, novel way to approach the topic that hasn’t been done before. This will ensure your work is original.

Talk to Knowledgeable People

Discuss ideas with professors, peers, and academics knowledgeable about your field. They might identify poorly researched topics or suggest exciting questions for further inquiry.

Review Coursework

Look back at class assignments, readings, lectures, and textbooks. Note down any topics that stood out as warranting deeper investigation. Build off classwork.

Choose a Manageable Scope

Ensure your topic is focused enough to tackle within the time and resources you have. Overly, broad topics become unmanageable. Define a clear, concise research question.

It is time to uncover the best quantitative research topics for STEM students.

199+ Best Quantitative Research Topics For STEM Students

These are the top most interesting Quantitative Research Topics For STEM Students.

You’ll receive better grades as a result of that.

Biology Quantitative Research Topics For STEM Students

  • How do different fertilizers affect how plants grow?
  • Does temperature change how fast enzymes work?
  • What is the variety of life like in a particular ecosystem over time?
  • What genetics underlie a rare disease?
  • Is there a link between diet and chronic illness?
  • Do some antibiotics work better on bacteria?
  • How does pollution impact water life in cities?
  • Is there a connection between stress and the immune system?
  • How do different fungi grow?
  • Do night and day animals behave differently?

Chemistry Quantitative Research Topics For STEM Students

  • What affects how fast chemical reactions occur?
  • What’s in household cleaners?
  • How do catalysts change hydrogen peroxide breakdown?
  • How do polymers act in different environments?
  • Can different salts dissolve in water?
  • What are pH levels like in natural waters?
  • Does temperature affect gas density?
  • How do acids and bases neutralize?
  • How does cooking change food chemicals?
  • Do antioxidants help preserve food?

Physics Quantitative Research Topics For STEM Students

  • How does light’s angle change reflection?
  • What affects a pendulum’s swing?
  • How do magnets work in different materials?
  • What makes solar cells efficient?
  • How do objects move in gravity?
  • What affects the speed of sound?
  • Does air resistance affect falling objects?
  • How do particle states differ?
  • Are superconductors different at low temperatures?
  • Does heat change electrical conductivity?

Computer Science Quantitative Research Topics For STEM Students

  • Do programming languages affect efficiency?
  • What security holes exist in operating systems?
  • What algorithms sort data best?
  • How can network routing be optimized?
  • How well do encryption methods secure data?
  • Can machine learning ID images?
  • Does parallel processing speed computing?
  • How do data structures affect memory?
  • What makes a good app interface?
  • Can cybersecurity tools spot threats?

Environmental Science Quantitative Research Topics For STEM Students

  • Does deforestation change the local climate?
  • Can recycling reduce waste?
  • How does urban growth impact wildlife?
  • Is there a link between pollution and illness?
  • Do renewable energies cut emissions?
  • How does water quality differ between cities and rural areas?
  • Are oceans and coral bleaching connected?
  • How does climate change impact plants?
  • How well do wastewater treatments work?
  • How do invasive species affect ecosystems?

Mathematics Quantitative Research Topics For STEM Students

  • Are there patterns in prime numbers?
  • What are the properties of fractals?
  • How are lottery numbers distributed?
  • How does math relate to the real world?
  • Can math model disease spread?
  • How well do integration methods work?
  • How do calculus sequences and series behave?
  • What are geometrical shape properties?
  • How does graph theory apply to social networks?
  • Can statistics analyze voting patterns?

Engineering Quantitative Research Topics For STEM Students

  • How efficient are renewable energies?
  • What building materials are sturdiest?
  • What aircraft designs are most aerodynamic?
  • How stable are different bridge types?
  • Can materials help purify water?
  • What irrigation systems work best in agriculture?
  • How do cities’ transit systems compare?
  • What cooling systems work best for electronics?
  • What car safety features work best?
  • What construction methods are most sustainable?

Health Sciences Quantitative Research Topics For STEM Students

  • Is exercise linked to heart health?
  • How do diets affect weight loss?
  • Do sleep patterns affect thinking?
  • How well do vaccines work?
  • Do genes influence disease risk?
  • Which physical therapies work best?
  • Is there a link between air quality and respiratory health?
  • How does stress management affect mental health?
  • Does telemedicine improve outcomes?
  • Can wearables effectively monitor vital signs?

Geology Quantitative Research Topics For STEM Students

  • What Geological Factors Cause Earthquakes?
  • How do rocks erode?
  • How does volcanism impact ecosystems?
  • What’s the history of a region?
  • Does climate change affect glaciers?
  • How has sea level changed over time?
  • What minerals are in different soils?
  • How do caves form?
  • How does geology affect groundwater?
  • How does geology relate to resource extraction?

Materials Science Quantitative Research Topics For STEM Students

  • How do semiconductors conduct electricity?
  • What coatings are most durable?
  • Which insulators resist heat flow?
  • What magnetic properties are helpful in electronics?
  • How does radiation affect spacecraft materials?
  • How do materials change under stress?
  • What alloys resist corrosion?
  • What can nanomaterials do?
  • How do polymers behave in different environments?
  • What properties have 3D printed materials?

Astronomy Quantitative Research Topics For STEM Students

  • What are the properties of exoplanets?
  • How do solar system bodies interact?
  • How do stars evolve and affect galaxies?
  • What does cosmic microwave radiation reveal about the early universe?
  • What are black holes’ properties and gravitational effects?
  • How fast is the universe expanding?
  • What is dark matter?
  • What have telescopes revealed about the universe?
  • What are the planets’ geological features?
  • Could there be life on Mars or Europa?

Robotics Quantitative Research Topics For STEM Students

  • What locomotion mechanisms work best in robots?
  • How can swarm robotics enable collaboration?
  • How is AI being developed for autonomous robots?
  • How are robotic arms designed and controlled?
  • How are robots used in disaster response?
  • Are robot-assisted surgeries effective?
  • What are the ethics of AI robots?
  • How do autonomous vehicles behave?
  • How are robots used in space?
  • Could humans and robots productively collaborate?
:

Social Sciences Quantitative Research Topics For STEM Students

  • How does social media affect relationships?
  • What parenting styles influence child development?
  • Is there a link between socioeconomics and education?
  • How does culture influence behavior?
  • What psychology underlies online consumerism?
  • Can interventions reduce addiction?
  • What is the impact of immigration policies?
  • How do people cope after crises?
  • Can social programs reduce poverty?
  • How do gender and identity affect workplaces?

Economics Quantitative Research Topics For STEM Students

  • How does inflation relate to economic growth?
  • How do fiscal policies affect income inequality?
  • What tax systems generate the most revenue?
  • What are the economic effects of trade deals?
  • What drives e-commerce purchases?
  • Do environmental policies improve economic outcomes?
  • How do interest rates affect investment?
  • What are the economic impacts of healthcare reforms?
  • How does technology affect labor markets?
  • What is the global impact of financial crises?

Agriculture Quantitative Research Topics For STEM Students

  • What irrigation methods work best?
  • How does climate change impact crop yields?
  • Can organic farming improve soil health?
  • What genetic traits confer pest/disease resistance?
  • What environmental effects do farming techniques have?
  • How do growing conditions alter nutritional value?
  • Can data analytics and precision agriculture improve yields?
  • Are small farms economically sustainable?
  • How do supply chain issues impact food security?
  • Could vertical farming work in cities?

Quantitative Research Topic Ideas For STEM Students In The Philippines:

  • Typhoon Training and Resilience
  • Air Quality in Manila
  • Online Learning and Math Scores
  • Solar Power in Rural Villages
  • Food and School Performance
  • Local Plants for Medicine
  • Water Quality in Rivers
  • Mangroves and Coastal Protection
  • Dengue Fever in Cities
  • Waste Management in Cities

Experimental Quantitative Research Topics For STEM Students

  • Testing Bridge Designs
  • Wind Turbine Prototype Efficiency
  • Battery Storage Capacity
  • Water Filtration Methods
  • Crop Growth With Organic Fertilizers
  • Material Strength Under Stress
  • Rocket Engine Performance
  • Artificial Intelligence Image Recognition
  • Electric Car Energy Use
  • Greenhouse Gas Reduction Strategies

30 Quantitative Research Topic Ideas For STEM Students

  • Investigating the properties and applications of novel materials created through 3D printing.
  • Studying the effectiveness of virtual reality simulations for medical training programs.
  • Analyzing the feasibility and methods for mineral extraction from asteroids.
  • Developing machine learning algorithms to improve navigation in self-driving cars.
  • Testing the use of drone systems for disaster response and relief operations.
  • Implementing augmented reality to enhance manufacturing and assembly processes.
  • Evaluating efficiency and optimal positioning for offshore wind farms.
  • Comparing methods and materials for recycling different types of plastics.
  • Examining the unique properties of graphene for uses in electronics and composites.
  • Assessing the risks and solutions for commercial space travel programs.
  • Designing and deploying rainwater harvesting systems in urban environments.
  • Creating biodegradable packaging materials from sustainable sources.
  • Building neural networks to predict stock market trends and patterns.
  • Using aquaponics systems for urban farming in limited spaces.
  • Leveraging AI algorithms for early detection of diseases like cancer.
  • Developing applications to take advantage of quantum computing breakthroughs.
  • Analyzing Martian soil for viability in growing crops for future colonies.
  • Optimizing traffic flow patterns on highways to reduce congestion.
  • Evaluating energy use and optimization in smartphones and devices.
  • Converting ocean wave energy into usable electricity.
  • Printing 3D biocompatible tissues and organs for transplants.
  • Improving cybersecurity through new encryption and authentication techniques.
  • Using solar power to operate desalination systems for clean water access.
  • Editing plant genes with CRISPR to improve crop yields.
  • Building fully electric aircraft for regional commercial flights.
  • Using tiny microrobots for targeted drug delivery and therapies.
  • Developing robotic exoskeletons to improve mobility for disabled individuals.
  • Implementing blockchain technology to securely track global supply chains.
  • Designing floating wind turbines for offshore energy generation.
  • Creating a hyperloop system for high-speed terrestrial transportation.

Final Thoughts,

In conclusion, quantitative research is valuable for STEM students. It lets them test ideas using statistics, experiments, and measurable data. This allows students to move beyond theory and into evidence-based findings. With quantitative methods, students can verify ideas and expand their knowledge. 

Mastering these methods prepares STEM students to innovate and lead in the future. However, they must use quantitative research ethically and objectively. If used properly, it can lead to discoveries that advance STEM fields. Quantitative research gives STEM students concrete insights to deepen their scientific understanding. 

The numeric precision of quantitative data enables final conclusions to be drawn. By learning quantitative skills, STEM students position themselves at the forefront of creation. Yet, they must analyze results in a balanced way. Overall, quantitative research is a strong tool that can unlock breakthroughs when utilized judiciously.

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

quantitative research topics related to science

Research Topics & Ideas: Education

170+ Research Ideas To Fast-Track Your Dissertation, Thesis Or Research Project

quantitative research topics related to science

I f you’re just starting out exploring education-related topics for your dissertation, thesis or research project, you’ve come to the right place. In this post, we’ll help kickstart your research topic ideation process by providing a hearty list of research topics and ideas , including examples from actual dissertations and theses..

PS – This is just the start…

We know it’s exciting to run through a list of research topics, but please keep in mind that this list is just a starting point . To develop a suitable education-related research topic, you’ll need to identify a clear and convincing research gap , and a viable plan of action to fill that gap.

If this sounds foreign to you, check out our free research topic webinar that explores how to find and refine a high-quality research topic, from scratch. Alternatively, if you’d like hands-on help, consider our 1-on-1 coaching service .

Overview: Education Research Topics

  • How to find a research topic (video)
  • List of 50+ education-related research topics/ideas
  • List of 120+ level-specific research topics 
  • Examples of actual dissertation topics in education
  • Tips to fast-track your topic ideation (video)
  • Where to get extra help

Education-Related Research Topics & Ideas

Below you’ll find a list of education-related research topics and idea kickstarters. These are fairly broad and flexible to various contexts, so keep in mind that you will need to refine them a little. Nevertheless, they should inspire some ideas for your project.

  • The impact of school funding on student achievement
  • The effects of social and emotional learning on student well-being
  • The effects of parental involvement on student behaviour
  • The impact of teacher training on student learning
  • The impact of classroom design on student learning
  • The impact of poverty on education
  • The use of student data to inform instruction
  • The role of parental involvement in education
  • The effects of mindfulness practices in the classroom
  • The use of technology in the classroom
  • The role of critical thinking in education
  • The use of formative and summative assessments in the classroom
  • The use of differentiated instruction in the classroom
  • The use of gamification in education
  • The effects of teacher burnout on student learning
  • The impact of school leadership on student achievement
  • The effects of teacher diversity on student outcomes
  • The role of teacher collaboration in improving student outcomes
  • The implementation of blended and online learning
  • The effects of teacher accountability on student achievement
  • The effects of standardized testing on student learning
  • The effects of classroom management on student behaviour
  • The effects of school culture on student achievement
  • The use of student-centred learning in the classroom
  • The impact of teacher-student relationships on student outcomes
  • The achievement gap in minority and low-income students
  • The use of culturally responsive teaching in the classroom
  • The impact of teacher professional development on student learning
  • The use of project-based learning in the classroom
  • The effects of teacher expectations on student achievement
  • The use of adaptive learning technology in the classroom
  • The impact of teacher turnover on student learning
  • The effects of teacher recruitment and retention on student learning
  • The impact of early childhood education on later academic success
  • The impact of parental involvement on student engagement
  • The use of positive reinforcement in education
  • The impact of school climate on student engagement
  • The role of STEM education in preparing students for the workforce
  • The effects of school choice on student achievement
  • The use of technology in the form of online tutoring

Free Webinar: How To Find A Dissertation Research Topic

Level-Specific Research Topics

Looking for research topics for a specific level of education? We’ve got you covered. Below you can find research topic ideas for primary, secondary and tertiary-level education contexts. Click the relevant level to view the respective list.

Research Topics: Pick An Education Level

Primary education.

  • Investigating the effects of peer tutoring on academic achievement in primary school
  • Exploring the benefits of mindfulness practices in primary school classrooms
  • Examining the effects of different teaching strategies on primary school students’ problem-solving skills
  • The use of storytelling as a teaching strategy in primary school literacy instruction
  • The role of cultural diversity in promoting tolerance and understanding in primary schools
  • The impact of character education programs on moral development in primary school students
  • Investigating the use of technology in enhancing primary school mathematics education
  • The impact of inclusive curriculum on promoting equity and diversity in primary schools
  • The impact of outdoor education programs on environmental awareness in primary school students
  • The influence of school climate on student motivation and engagement in primary schools
  • Investigating the effects of early literacy interventions on reading comprehension in primary school students
  • The impact of parental involvement in school decision-making processes on student achievement in primary schools
  • Exploring the benefits of inclusive education for students with special needs in primary schools
  • Investigating the effects of teacher-student feedback on academic motivation in primary schools
  • The role of technology in developing digital literacy skills in primary school students
  • Effective strategies for fostering a growth mindset in primary school students
  • Investigating the role of parental support in reducing academic stress in primary school children
  • The role of arts education in fostering creativity and self-expression in primary school students
  • Examining the effects of early childhood education programs on primary school readiness
  • Examining the effects of homework on primary school students’ academic performance
  • The role of formative assessment in improving learning outcomes in primary school classrooms
  • The impact of teacher-student relationships on academic outcomes in primary school
  • Investigating the effects of classroom environment on student behavior and learning outcomes in primary schools
  • Investigating the role of creativity and imagination in primary school curriculum
  • The impact of nutrition and healthy eating programs on academic performance in primary schools
  • The impact of social-emotional learning programs on primary school students’ well-being and academic performance
  • The role of parental involvement in academic achievement of primary school children
  • Examining the effects of classroom management strategies on student behavior in primary school
  • The role of school leadership in creating a positive school climate Exploring the benefits of bilingual education in primary schools
  • The effectiveness of project-based learning in developing critical thinking skills in primary school students
  • The role of inquiry-based learning in fostering curiosity and critical thinking in primary school students
  • The effects of class size on student engagement and achievement in primary schools
  • Investigating the effects of recess and physical activity breaks on attention and learning in primary school
  • Exploring the benefits of outdoor play in developing gross motor skills in primary school children
  • The effects of educational field trips on knowledge retention in primary school students
  • Examining the effects of inclusive classroom practices on students’ attitudes towards diversity in primary schools
  • The impact of parental involvement in homework on primary school students’ academic achievement
  • Investigating the effectiveness of different assessment methods in primary school classrooms
  • The influence of physical activity and exercise on cognitive development in primary school children
  • Exploring the benefits of cooperative learning in promoting social skills in primary school students

Secondary Education

  • Investigating the effects of school discipline policies on student behavior and academic success in secondary education
  • The role of social media in enhancing communication and collaboration among secondary school students
  • The impact of school leadership on teacher effectiveness and student outcomes in secondary schools
  • Investigating the effects of technology integration on teaching and learning in secondary education
  • Exploring the benefits of interdisciplinary instruction in promoting critical thinking skills in secondary schools
  • The impact of arts education on creativity and self-expression in secondary school students
  • The effectiveness of flipped classrooms in promoting student learning in secondary education
  • The role of career guidance programs in preparing secondary school students for future employment
  • Investigating the effects of student-centered learning approaches on student autonomy and academic success in secondary schools
  • The impact of socio-economic factors on educational attainment in secondary education
  • Investigating the impact of project-based learning on student engagement and academic achievement in secondary schools
  • Investigating the effects of multicultural education on cultural understanding and tolerance in secondary schools
  • The influence of standardized testing on teaching practices and student learning in secondary education
  • Investigating the effects of classroom management strategies on student behavior and academic engagement in secondary education
  • The influence of teacher professional development on instructional practices and student outcomes in secondary schools
  • The role of extracurricular activities in promoting holistic development and well-roundedness in secondary school students
  • Investigating the effects of blended learning models on student engagement and achievement in secondary education
  • The role of physical education in promoting physical health and well-being among secondary school students
  • Investigating the effects of gender on academic achievement and career aspirations in secondary education
  • Exploring the benefits of multicultural literature in promoting cultural awareness and empathy among secondary school students
  • The impact of school counseling services on student mental health and well-being in secondary schools
  • Exploring the benefits of vocational education and training in preparing secondary school students for the workforce
  • The role of digital literacy in preparing secondary school students for the digital age
  • The influence of parental involvement on academic success and well-being of secondary school students
  • The impact of social-emotional learning programs on secondary school students’ well-being and academic success
  • The role of character education in fostering ethical and responsible behavior in secondary school students
  • Examining the effects of digital citizenship education on responsible and ethical technology use among secondary school students
  • The impact of parental involvement in school decision-making processes on student outcomes in secondary schools
  • The role of educational technology in promoting personalized learning experiences in secondary schools
  • The impact of inclusive education on the social and academic outcomes of students with disabilities in secondary schools
  • The influence of parental support on academic motivation and achievement in secondary education
  • The role of school climate in promoting positive behavior and well-being among secondary school students
  • Examining the effects of peer mentoring programs on academic achievement and social-emotional development in secondary schools
  • Examining the effects of teacher-student relationships on student motivation and achievement in secondary schools
  • Exploring the benefits of service-learning programs in promoting civic engagement among secondary school students
  • The impact of educational policies on educational equity and access in secondary education
  • Examining the effects of homework on academic achievement and student well-being in secondary education
  • Investigating the effects of different assessment methods on student performance in secondary schools
  • Examining the effects of single-sex education on academic performance and gender stereotypes in secondary schools
  • The role of mentoring programs in supporting the transition from secondary to post-secondary education

Tertiary Education

  • The role of student support services in promoting academic success and well-being in higher education
  • The impact of internationalization initiatives on students’ intercultural competence and global perspectives in tertiary education
  • Investigating the effects of active learning classrooms and learning spaces on student engagement and learning outcomes in tertiary education
  • Exploring the benefits of service-learning experiences in fostering civic engagement and social responsibility in higher education
  • The influence of learning communities and collaborative learning environments on student academic and social integration in higher education
  • Exploring the benefits of undergraduate research experiences in fostering critical thinking and scientific inquiry skills
  • Investigating the effects of academic advising and mentoring on student retention and degree completion in higher education
  • The role of student engagement and involvement in co-curricular activities on holistic student development in higher education
  • The impact of multicultural education on fostering cultural competence and diversity appreciation in higher education
  • The role of internships and work-integrated learning experiences in enhancing students’ employability and career outcomes
  • Examining the effects of assessment and feedback practices on student learning and academic achievement in tertiary education
  • The influence of faculty professional development on instructional practices and student outcomes in tertiary education
  • The influence of faculty-student relationships on student success and well-being in tertiary education
  • The impact of college transition programs on students’ academic and social adjustment to higher education
  • The impact of online learning platforms on student learning outcomes in higher education
  • The impact of financial aid and scholarships on access and persistence in higher education
  • The influence of student leadership and involvement in extracurricular activities on personal development and campus engagement
  • Exploring the benefits of competency-based education in developing job-specific skills in tertiary students
  • Examining the effects of flipped classroom models on student learning and retention in higher education
  • Exploring the benefits of online collaboration and virtual team projects in developing teamwork skills in tertiary students
  • Investigating the effects of diversity and inclusion initiatives on campus climate and student experiences in tertiary education
  • The influence of study abroad programs on intercultural competence and global perspectives of college students
  • Investigating the effects of peer mentoring and tutoring programs on student retention and academic performance in tertiary education
  • Investigating the effectiveness of active learning strategies in promoting student engagement and achievement in tertiary education
  • Investigating the effects of blended learning models and hybrid courses on student learning and satisfaction in higher education
  • The role of digital literacy and information literacy skills in supporting student success in the digital age
  • Investigating the effects of experiential learning opportunities on career readiness and employability of college students
  • The impact of e-portfolios on student reflection, self-assessment, and showcasing of learning in higher education
  • The role of technology in enhancing collaborative learning experiences in tertiary classrooms
  • The impact of research opportunities on undergraduate student engagement and pursuit of advanced degrees
  • Examining the effects of competency-based assessment on measuring student learning and achievement in tertiary education
  • Examining the effects of interdisciplinary programs and courses on critical thinking and problem-solving skills in college students
  • The role of inclusive education and accessibility in promoting equitable learning experiences for diverse student populations
  • The role of career counseling and guidance in supporting students’ career decision-making in tertiary education
  • The influence of faculty diversity and representation on student success and inclusive learning environments in higher education

Research topic idea mega list

Education-Related Dissertations & Theses

While the ideas we’ve presented above are a decent starting point for finding a research topic in education, they are fairly generic and non-specific. So, it helps to look at actual dissertations and theses in the education space to see how this all comes together in practice.

Below, we’ve included a selection of education-related research projects to help refine your thinking. These are actual dissertations and theses, written as part of Master’s and PhD-level programs, so they can provide some useful insight as to what a research topic looks like in practice.

  • From Rural to Urban: Education Conditions of Migrant Children in China (Wang, 2019)
  • Energy Renovation While Learning English: A Guidebook for Elementary ESL Teachers (Yang, 2019)
  • A Reanalyses of Intercorrelational Matrices of Visual and Verbal Learners’ Abilities, Cognitive Styles, and Learning Preferences (Fox, 2020)
  • A study of the elementary math program utilized by a mid-Missouri school district (Barabas, 2020)
  • Instructor formative assessment practices in virtual learning environments : a posthumanist sociomaterial perspective (Burcks, 2019)
  • Higher education students services: a qualitative study of two mid-size universities’ direct exchange programs (Kinde, 2020)
  • Exploring editorial leadership : a qualitative study of scholastic journalism advisers teaching leadership in Missouri secondary schools (Lewis, 2020)
  • Selling the virtual university: a multimodal discourse analysis of marketing for online learning (Ludwig, 2020)
  • Advocacy and accountability in school counselling: assessing the use of data as related to professional self-efficacy (Matthews, 2020)
  • The use of an application screening assessment as a predictor of teaching retention at a midwestern, K-12, public school district (Scarbrough, 2020)
  • Core values driving sustained elite performance cultures (Beiner, 2020)
  • Educative features of upper elementary Eureka math curriculum (Dwiggins, 2020)
  • How female principals nurture adult learning opportunities in successful high schools with challenging student demographics (Woodward, 2020)
  • The disproportionality of Black Males in Special Education: A Case Study Analysis of Educator Perceptions in a Southeastern Urban High School (McCrae, 2021)

As you can see, these research topics are a lot more focused than the generic topic ideas we presented earlier. So, in order for you to develop a high-quality research topic, you’ll need to get specific and laser-focused on a specific context with specific variables of interest.  In the video below, we explore some other important things you’ll need to consider when crafting your research topic.

Get 1-On-1 Help

If you’re still unsure about how to find a quality research topic within education, check out our Research Topic Kickstarter service, which is the perfect starting point for developing a unique, well-justified research topic.

Research Bootcamps

Find The Perfect Research Topic

How To Choose A Research Topic: 5 Key Criteria

How To Choose A Research Topic: 5 Key Criteria

How To Choose A Research Topic Step-By-Step Tutorial With Examples + Free Topic...

Research Topics & Ideas: Automation & Robotics

Research Topics & Ideas: Automation & Robotics

Research Topics & Ideas: Robotics 50 Topic Ideas To Kickstart Your Research...

Research Topics & Ideas: Sociology

Research Topics & Ideas: Sociology

Research Topics & Ideas: Sociology 50 Topic Ideas To Kickstart Your Research...

Research Topics & Ideas: Public Health & Epidemiology

Research Topics & Ideas: Public Health & Epidemiology

Research Topics & Ideas: Public Health 50 Topic Ideas To Kickstart Your Research...

Research Topics & Ideas: Neuroscience

Research Topics & Ideas: Neuroscience

Research Topics & Ideas: Neuroscience 50 Topic Ideas To Kickstart Your Research...

📄 FREE TEMPLATES

Research Topic Ideation

Proposal Writing

Literature Review

Methodology & Analysis

Academic Writing

Referencing & Citing

Apps, Tools & Tricks

The Grad Coach Podcast

70 Comments

Watson Kabwe

This is an helpful tool 🙏

Musarrat Parveen

Special education

Akbar khan

Really appreciated by this . It is the best platform for research related items

Trishna Roy

Research title related to school of students

Nasiru Yusuf

How are you

Oyebanji Khadijat Anike

I think this platform is actually good enough.

Angel taña

Research title related to students

My field is research measurement and evaluation. Need dissertation topics in the field

Saira Murtaza

Assalam o Alaikum I’m a student Bs educational Resarch and evaluation I’m confused to choose My thesis title please help me in choose the thesis title

Ngirumuvugizi Jaccques

Good idea I’m going to teach my colleagues

Anangnerisia@gmail.com

You can find our list of nursing-related research topic ideas here: https://gradcoach.com/research-topics-nursing/

FOSU DORIS

Write on action research topic, using guidance and counseling to address unwanted teenage pregnancy in school

Samson ochuodho

Thanks a lot

Johaima

I learned a lot from this site, thank you so much!

Rhod Tuyan

Thank you for the information.. I would like to request a topic based on school major in social studies

Mercedes Bunsie

parental involvement and students academic performance

Abshir Mustafe Cali

Science education topics?

alina

plz tell me if you got some good topics, im here for finding research topic for masters degree

Karen Joy Andrade

How about School management and supervision pls.?

JOHANNES SERAME MONYATSI

Hi i am an Deputy Principal in a primary school. My wish is to srudy foe Master’s degree in Education.Please advice me on which topic can be relevant for me. Thanks.

Bonang Morapedi

Thank you so much for the information provided. I would like to get an advice on the topic to research for my masters program. My area of concern is on teacher morale versus students achievement.

NKWAIN Chia Charles

Every topic proposed above on primary education is a starting point for me. I appreciate immensely the team that has sat down to make a detail of these selected topics just for beginners like us. Be blessed.

Nkwain Chia Charles

Kindly help me with the research questions on the topic” Effects of workplace conflict on the employees’ job performance”. The effects can be applicable in every institution,enterprise or organisation.

Kelvin Kells Grant

Greetings, I am a student majoring in Sociology and minoring in Public Administration. I’m considering any recommended research topic in the field of Sociology.

Sulemana Alhassan

I’m a student pursuing Mphil in Basic education and I’m considering any recommended research proposal topic in my field of study

Cristine

Research Defense for students in senior high

Kupoluyi Regina

Kindly help me with a research topic in educational psychology. Ph.D level. Thank you.

Project-based learning is a teaching/learning type,if well applied in a classroom setting will yield serious positive impact. What can a teacher do to implement this in a disadvantaged zone like “North West Region of Cameroon ( hinterland) where war has brought about prolonged and untold sufferings on the indegins?

Damaris Nzoka

I wish to get help on topics of research on educational administration

I wish to get help on topics of research on educational administration PhD level

Sadaf

I am also looking for such type of title

Afriyie Saviour

I am a student of undergraduate, doing research on how to use guidance and counseling to address unwanted teenage pregnancy in school

wysax

the topics are very good regarding research & education .

derrick

Am an undergraduate student carrying out a research on the impact of nutritional healthy eating programs on academic performance in primary schools

William AU Mill

Can i request your suggestion topic for my Thesis about Teachers as an OFW. thanx you

ChRISTINE

Would like to request for suggestions on a topic in Economics of education,PhD level

Aza Hans

Would like to request for suggestions on a topic in Economics of education

George

Hi 👋 I request that you help me with a written research proposal about education the format

Cynthia abuabire

Am offering degree in education senior high School Accounting. I want a topic for my project work

Sarah Moyambo

l would like to request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

request suggestions on a topic in managing teaching and learning, PhD level (educational leadership and management)

Ernest Gyabaah

I would to inquire on research topics on Educational psychology, Masters degree

Aron kirui

I am PhD student, I am searching my Research topic, It should be innovative,my area of interest is online education,use of technology in education

revathy a/p letchumanan

request suggestion on topic in masters in medical education .

D.Newlands PhD.

Look at British Library as they keep a copy of all PhDs in the UK Core.ac.uk to access Open University and 6 other university e-archives, pdf downloads mostly available, all free.

Monica

May I also ask for a topic based on mathematics education for college teaching, please?

Aman

Please I am a masters student of the department of Teacher Education, Faculty of Education Please I am in need of proposed project topics to help with my final year thesis

Ellyjoy

Am a PhD student in Educational Foundations would like a sociological topic. Thank

muhammad sani

please i need a proposed thesis project regardging computer science

also916

Greetings and Regards I am a doctoral student in the field of philosophy of education. I am looking for a new topic for my thesis. Because of my work in the elementary school, I am looking for a topic that is from the field of elementary education and is related to the philosophy of education.

shantel orox

Masters student in the field of curriculum, any ideas of a research topic on low achiever students

Rey

In the field of curriculum any ideas of a research topic on deconalization in contextualization of digital teaching and learning through in higher education

Omada Victoria Enyojo

Amazing guidelines

JAMES MALUKI MUTIA

I am a graduate with two masters. 1) Master of arts in religious studies and 2) Master in education in foundations of education. I intend to do a Ph.D. on my second master’s, however, I need to bring both masters together through my Ph.D. research. can I do something like, ” The contribution of Philosophy of education for a quality religion education in Kenya”? kindly, assist and be free to suggest a similar topic that will bring together the two masters. thanks in advance

betiel

Hi, I am an Early childhood trainer as well as a researcher, I need more support on this topic: The impact of early childhood education on later academic success.

TURIKUMWE JEAN BOSCO

I’m a student in upper level secondary school and I need your support in this research topics: “Impact of incorporating project -based learning in teaching English language skills in secondary schools”.

Fitsum Ayele

Although research activities and topics should stem from reflection on one’s practice, I found this site valuable as it effectively addressed many issues we have been experiencing as practitioners.

Lavern Stigers

Your style is unique in comparison to other folks I’ve read stuff from. Thanks for posting when you have the opportunity, Guess I will just book mark this site.

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Submit Comment

  • Print Friendly

61 intriguing psychology research topics to explore

Last updated

11 January 2024

Reviewed by

Brittany Ferri, PhD, OTR/L

Short on time? Get an AI generated summary of this article instead

Psychology is an incredibly diverse, critical, and ever-changing area of study in the medical and health industries. Because of this, it’s a common area of study for students and healthcare professionals.

We’re walking you through picking the perfect topic for your upcoming paper or study. Keep reading for plenty of example topics to pique your interest and curiosity.

  • How to choose a psychology research topic

Exploring a psychology-based topic for your research project? You need to pick a specific area of interest to collect compelling data. 

Use these tips to help you narrow down which psychology topics to research:

Focus on a particular area of psychology

The most effective psychological research focuses on a smaller, niche concept or disorder within the scope of a study. 

Psychology is a broad and fascinating area of science, including everything from diagnosed mental health disorders to sports performance mindset assessments. 

This gives you plenty of different avenues to explore. Having a hard time choosing? Check out our list of 61 ideas further down in this article to get started.

Read the latest clinical studies

Once you’ve picked a more niche topic to explore, you need to do your due diligence and explore other research projects on the same topic. 

This practice will help you learn more about your chosen topic, ask more specific questions, and avoid covering existing projects. 

For the best results, we recommend creating a research folder of associated published papers to reference throughout your project. This makes it much easier to cite direct references and find inspiration down the line.

Find a topic you enjoy and ask questions

Once you’ve spent time researching and collecting references for your study, you finally get to explore. 

Whether this research project is for work, school, or just for fun, having a passion for your research will make the project much more enjoyable. (Trust us, there will be times when that is the only thing that keeps you going.) 

Now you’ve decided on the topic, ask more nuanced questions you might want to explore. 

If you can, pick the direction that interests you the most to make the research process much more enjoyable.

  • 61 psychology topics to research in 2024

Need some extra help starting your psychology research project on the right foot? Explore our list of 61 cutting-edge, in-demand psychology research topics to use as a starting point for your research journey.

  • Psychology research topics for university students

As a university student, it can be hard to pick a research topic that fits the scope of your classes and is still compelling and unique. 

Here are a few exciting topics we recommend exploring for your next assigned research project:

Mental health in post-secondary students

Seeking post-secondary education is a stressful and overwhelming experience for most students, making this topic a great choice to explore for your in-class research paper. 

Examples of post-secondary mental health research topics include:

Student mental health status during exam season

Mental health disorder prevalence based on study major

The impact of chronic school stress on overall quality of life

The impacts of cyberbullying

Cyberbullying can occur at all ages, starting as early as elementary school and carrying through into professional workplaces. 

Examples of cyberbullying-based research topics you can study include:

The impact of cyberbullying on self-esteem

Common reasons people engage in cyberbullying 

Cyberbullying themes and commonly used terms

Cyberbullying habits in children vs. adults

The long-term effects of cyberbullying

  • Clinical psychology research topics

If you’re looking to take a more clinical approach to your next project, here are a few topics that involve direct patient assessment for you to consider:

Chronic pain and mental health

Living with chronic pain dramatically impacts every aspect of a person’s life, including their mental and emotional health. 

Here are a few examples of in-demand pain-related psychology research topics:

The connection between diabetic neuropathy and depression

Neurological pain and its connection to mental health disorders

Efficacy of meditation and mindfulness for pain management

The long-term effects of insomnia

Insomnia is where you have difficulty falling or staying asleep. It’s a common health concern that impacts millions of people worldwide. 

This is an excellent topic because insomnia can have a variety of causes, offering many research possibilities. 

Here are a few compelling psychology research topics about insomnia you could investigate:

The prevalence of insomnia based on age, gender, and ethnicity

Insomnia and its impact on workplace productivity

The connection between insomnia and mental health disorders

Efficacy and use of melatonin supplements for insomnia

The risks and benefits of prescription insomnia medications

Lifestyle options for managing insomnia symptoms

The efficacy of mental health treatment options

Management and treatment of mental health conditions is an ever-changing area of study. If you can witness or participate in mental health therapies, this can make a great research project. 

Examples of mental health treatment-related psychology research topics include:

The efficacy of cognitive behavioral therapy (CBT) for patients with severe anxiety

The benefits and drawbacks of group vs. individual therapy sessions

Music therapy for mental health disorders

Electroconvulsive therapy (ECT) for patients with depression 

  • Controversial psychology research paper topics

If you are looking to explore a more cutting-edge or modern psychology topic, you can delve into a variety of controversial and topical options:

The impact of social media and digital platforms

Ever since access to internet forums and video games became more commonplace, there’s been growing concern about the impact these digital platforms have on mental health. 

Examples of social media and video game-related psychology research topics include:

The effect of edited images on self-confidence

How social media platforms impact social behavior

Video games and their impact on teenage anger and violence

Digital communication and the rapid spread of misinformation

The development of digital friendships

Psychotropic medications for mental health

In recent years, the interest in using psychoactive medications to treat and manage health conditions has increased despite their inherently controversial nature. 

Examples of psychotropic medication-related research topics include:

The risks and benefits of using psilocybin mushrooms for managing anxiety

The impact of marijuana on early-onset psychosis

Childhood marijuana use and related prevalence of mental health conditions

Ketamine and its use for complex PTSD (C-PTSD) symptom management

The effect of long-term psychedelic use and mental health conditions

  • Mental health disorder research topics

As one of the most popular subsections of psychology, studying mental health disorders and how they impact quality of life is an essential and impactful area of research. 

While studies in these areas are common, there’s always room for additional exploration, including the following hot-button topics:

Anxiety and depression disorders

Anxiety and depression are well-known and heavily researched mental health disorders. 

Despite this, we still don’t know many things about these conditions, making them great candidates for psychology research projects:

Social anxiety and its connection to chronic loneliness

C-PTSD symptoms and causes

The development of phobias

Obsessive-compulsive disorder (OCD) behaviors and symptoms

Depression triggers and causes

Self-care tools and resources for depression

The prevalence of anxiety and depression in particular age groups or geographic areas

Bipolar disorder

Bipolar disorder is a complex and multi-faceted area of psychology research. 

Use your research skills to learn more about this condition and its impact by choosing any of the following topics:

Early signs of bipolar disorder

The incidence of bipolar disorder in young adults

The efficacy of existing bipolar treatment options

Bipolar medication side effects

Cognitive behavioral therapy for people with bipolar 

Schizoaffective disorder

Schizoaffective disorder is often stigmatized, and less common mental health disorders are a hotbed for new and exciting research. 

Here are a few examples of interesting research topics related to this mental health disorder:

The prevalence of schizoaffective disorder by certain age groups or geographic locations

Risk factors for developing schizoaffective disorder

The prevalence and content of auditory and visual hallucinations

Alternative therapies for schizoaffective disorder

  • Societal and systematic psychology research topics

Modern society’s impact is deeply enmeshed in our mental and emotional health on a personal and community level. 

Here are a few examples of societal and systemic psychology research topics to explore in more detail:

Access to mental health services

While mental health awareness has risen over the past few decades, access to quality mental health treatment and resources is still not equitable. 

This can significantly impact the severity of a person’s mental health symptoms, which can result in worse health outcomes if left untreated. 

Explore this crucial issue and provide information about the need for improved mental health resource access by studying any of the following topics:

Rural vs. urban access to mental health resources

Access to crisis lines by location

Wait times for emergency mental health services

Inequities in mental health access based on income and location

Insurance coverage for mental health services

Systemic racism and mental health

Societal systems and the prevalence of systemic racism heavily impact every aspect of a person’s overall health.

Researching these topics draws attention to existing problems and contributes valuable insights into ways to improve access to care moving forward.

Examples of systemic racism-related psychology research topics include: 

Access to mental health resources based on race

The prevalence of BIPOC mental health therapists in a chosen area

The impact of systemic racism on mental health and self-worth

Racism training for mental health workers

The prevalence of mental health disorders in discriminated groups

LGBTQIA+ mental health concerns

Research about LGBTQIA+ people and their mental health needs is a unique area of study to explore for your next research project. It’s a commonly overlooked and underserved community.

Examples of LGBTQIA+ psychology research topics to consider include:

Mental health supports for queer teens and children

The impact of queer safe spaces on mental health

The prevalence of mental health disorders in the LGBTQIA+ community

The benefits of queer mentorship and found family

Substance misuse in LQBTQIA+ youth and adults

  • Collect data and identify trends with Dovetail

Psychology research is an exciting and competitive study area, making it the perfect choice for projects or papers.

Take the headache out of analyzing your data and instantly access the insights you need to complete your next psychology research project by teaming up with Dovetail today.

Should you be using a customer insights hub?

Do you want to discover previous research faster?

Do you share your research findings with others?

Do you analyze research data?

Start for free today, add your research, and get to key insights faster

Editor’s picks

Last updated: 18 April 2023

Last updated: 27 February 2023

Last updated: 22 August 2024

Last updated: 5 February 2023

Last updated: 16 August 2024

Last updated: 9 March 2023

Last updated: 30 April 2024

Last updated: 12 December 2023

Last updated: 11 March 2024

Last updated: 4 July 2024

Last updated: 6 March 2024

Last updated: 5 March 2024

Last updated: 13 May 2024

Latest articles

Related topics, .css-je19u9{-webkit-align-items:flex-end;-webkit-box-align:flex-end;-ms-flex-align:flex-end;align-items:flex-end;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-flex-wrap:wrap;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-ms-flex-pack:center;-webkit-justify-content:center;justify-content:center;row-gap:0;text-align:center;max-width:671px;}@media (max-width: 1079px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}}@media (max-width: 799px){.css-je19u9{max-width:400px;}.css-je19u9>span{white-space:pre;}} decide what to .css-1kiodld{max-height:56px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}@media (max-width: 1079px){.css-1kiodld{display:none;}} build next, decide what to build next, log in or sign up.

Get started for free

Library Home

A Quick Guide to Quantitative Research in the Social Sciences

(12 reviews)

quantitative research topics related to science

Christine Davies, Carmarthen, Wales

Copyright Year: 2020

Last Update: 2021

Publisher: University of Wales Trinity Saint David

Language: English

Formats Available

Conditions of use.

Attribution-NonCommercial

Learn more about reviews.

quantitative research topics related to science

Reviewed by Jennifer Taylor, Assistant Professor, Texas A&M University-Corpus Christi on 4/18/24

This resource is a quick guide to quantitative research in the social sciences and not a comprehensive resource. It provides a VERY general overview of quantitative research but offers a good starting place for students new to research. It... read more

Comprehensiveness rating: 4 see less

This resource is a quick guide to quantitative research in the social sciences and not a comprehensive resource. It provides a VERY general overview of quantitative research but offers a good starting place for students new to research. It offers links and references to additional resources that are more comprehensive in nature.

Content Accuracy rating: 4

The content is relatively accurate. The measurement scale section is very sparse. Not all types of research designs or statistical methods are included, but it is a guide, so details are meant to be limited.

Relevance/Longevity rating: 4

The examples were interesting and appropriate. The content is up to date and will be useful for several years.

Clarity rating: 5

The text was clearly written. Tables and figures are not referenced in the text, which would have been nice.

Consistency rating: 5

The framework is consistent across chapters with terminology clearly highlighted and defined.

Modularity rating: 5

The chapters are subdivided into section that can be divided and assigned as reading in a course. Most chapters are brief and concise, unless elaboration is necessary, such as with the data analysis chapter. Again, this is a guide and not a comprehensive text, so sections are shorter and don't always include every subtopic that may be considered.

Organization/Structure/Flow rating: 5

The guide is well organized. I appreciate that the topics are presented in a logical and clear manner. The topics are provided in an order consistent with traditional research methods.

Interface rating: 5

The interface was easy to use and navigate. The images were clear and easy to read.

Grammatical Errors rating: 5

I did not notice any grammatical errors.

Cultural Relevance rating: 5

The materials are not culturally insensitive or offensive in any way.

I teach a Marketing Research course to undergraduates. I would consider using some of the chapters or topics included, especially the overview of the research designs and the analysis of data section.

Reviewed by Tiffany Kindratt, Assistant Professor, University of Texas at Arlington on 3/9/24

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers... read more

Comprehensiveness rating: 3 see less

The text provides a brief overview of quantitative research topics that is geared towards research in the fields of education, sociology, business, and nursing. The author acknowledges that the textbook is not a comprehensive resource but offers references to other resources that can be used to deepen the knowledge. The text does not include a glossary or index. The references in the figures for each chapter are not included in the reference section. It would be helpful to include those.

Overall, the text is accurate. For example, Figure 1 on page 6 provides a clear overview of the research process. It includes general definitions of primary and secondary research. It would be helpful to include more details to explain some of the examples before they are presented. For instance, the example on page 5 was unclear how it pertains to the literature review section.

In general, the text is relevant and up-to-date. The text includes many inferences of moving from qualitative to quantitative analysis. This was surprising to me as a quantitative researcher. The author mentions that moving from a qualitative to quantitative approach should only be done when needed. As a predominantly quantitative researcher, I would not advice those interested in transitioning to using a qualitative approach that qualitative research would enhance their research—not something that should only be done if you have to.

Clarity rating: 4

The text is written in a clear manner. It would be helpful to the reader if there was a description of the tables and figures in the text before they are presented.

Consistency rating: 4

The framework for each chapter and terminology used are consistent.

Modularity rating: 4

The text is clearly divided into sections within each chapter. Overall, the chapters are a similar brief length except for the chapter on data analysis, which is much more comprehensive than others.

Organization/Structure/Flow rating: 4

The topics in the text are presented in a clear and logical order. The order of the text follows the conventional research methodology in social sciences.

I did not encounter any interface issues when reviewing this text. All links worked and there were no distortions of the images or charts that may confuse the reader.

Grammatical Errors rating: 3

There are some grammatical/typographical errors throughout. Of note, for Section 5 in the table of contents. “The” should be capitalized to start the title. In the title for Table 3, the “t” in typical should be capitalized.

Cultural Relevance rating: 4

The examples are culturally relevant. The text is geared towards learners in the UK, but examples are relevant for use in other countries (i.e., United States). I did not see any examples that may be considered culturally insensitive or offensive in any way.

I teach a course on research methods in a Bachelor of Science in Public Health program. I would consider using some of the text, particularly in the analysis chapter to supplement the current textbook in the future.

Reviewed by Finn Bell, Assistant Professor, University of Michigan, Dearborn on 1/3/24

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary. read more

For it being a quick guide and only 26 pages, it is very comprehensive, but it does not include an index or glossary.

Content Accuracy rating: 5

As far as I can tell, the text is accurate, error-free and unbiased.

Relevance/Longevity rating: 5

This text is up-to-date, and given the content, unlikely to become obsolete any time soon.

The text is very clear and accessible.

The text is internally consistent.

Given how short the text is, it seems unnecessary to divide it into smaller readings, nonetheless, it is clearly labelled such that an instructor could do so.

The text is well-organized and brings readers through basic quantitative methods in a logical, clear fashion.

Easy to navigate. Only one table that is split between pages, but not in a way that is confusing.

There were no noticeable grammatical errors.

The examples in this book don't give enough information to rate this effectively.

This text is truly a very quick guide at only 26 double-spaced pages. Nonetheless, Davies packs a lot of information on the basics of quantitative research methods into this text, in an engaging way with many examples of the concepts presented. This guide is more of a brief how-to that takes readers as far as how to select statistical tests. While it would be impossible to fully learn quantitative research from such a short text, of course, this resource provides a great introduction, overview, and refresher for program evaluation courses.

Reviewed by Shari Fedorowicz, Adjunct Professor, Bridgewater State University on 12/16/22

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing... read more

Comprehensiveness rating: 5 see less

The text is indeed a quick guide for utilizing quantitative research. Appropriate and effective examples and diagrams were used throughout the text. The author clearly differentiates between use of quantitative and qualitative research providing the reader with the ability to distinguish two terms that frequently get confused. In addition, links and outside resources are provided to deepen the understanding as an option for the reader. The use of these links, coupled with diagrams and examples make this text comprehensive.

The content is mostly accurate. Given that it is a quick guide, the author chose a good selection of which types of research designs to include. However, some are not provided. For example, correlational or cross-correlational research is omitted and is not discussed in Section 3, but is used as a statistical example in the last section.

Examples utilized were appropriate and associated with terms adding value to the learning. The tables that included differentiation between types of statistical tests along with a parametric/nonparametric table were useful and relevant.

The purpose to the text and how to use this guide book is stated clearly and is established up front. The author is also very clear regarding the skill level of the user. Adding to the clarity are the tables with terms, definitions, and examples to help the reader unpack the concepts. The content related to the terms was succinct, direct, and clear. Many times examples or figures were used to supplement the narrative.

The text is consistent throughout from contents to references. Within each section of the text, the introductory paragraph under each section provides a clear understanding regarding what will be discussed in each section. The layout is consistent for each section and easy to follow.

The contents are visible and address each section of the text. A total of seven sections, including a reference section, is in the contents. Each section is outlined by what will be discussed in the contents. In addition, within each section, a heading is provided to direct the reader to the subtopic under each section.

The text is well-organized and segues appropriately. I would have liked to have seen an introductory section giving a narrative overview of what is in each section. This would provide the reader with the ability to get a preliminary glimpse into each upcoming sections and topics that are covered.

The book was easy to navigate and well-organized. Examples are presented in one color, links in another and last, figures and tables. The visuals supplemented the reading and placed appropriately. This provides an opportunity for the reader to unpack the reading by use of visuals and examples.

No significant grammatical errors.

The text is not offensive or culturally insensitive. Examples were inclusive of various races, ethnicities, and backgrounds.

This quick guide is a beneficial text to assist in unpacking the learning related to quantitative statistics. I would use this book to complement my instruction and lessons, or use this book as a main text with supplemental statistical problems and formulas. References to statistical programs were appropriate and were useful. The text did exactly what was stated up front in that it is a direct guide to quantitative statistics. It is well-written and to the point with content areas easy to locate by topic.

Reviewed by Sarah Capello, Assistant Professor, Radford University on 1/18/22

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text. read more

The text claims to provide "quick and simple advice on quantitative aspects of research in social sciences," which it does. There is no index or glossary, although vocabulary words are bolded and defined throughout the text.

The content is mostly accurate. I would have preferred a few nuances to be hashed out a bit further to avoid potential reader confusion or misunderstanding of the concepts presented.

The content is current; however, some of the references cited in the text are outdated. Newer editions of those texts exist.

The text is very accessible and readable for a variety of audiences. Key terms are well-defined.

There are no content discrepancies within the text. The author even uses similarly shaped graphics for recurring purposes throughout the text (e.g., arrow call outs for further reading, rectangle call outs for examples).

The content is chunked nicely by topics and sections. If it were used for a course, it would be easy to assign different sections of the text for homework, etc. without confusing the reader if the instructor chose to present the content in a different order.

The author follows the structure of the research process. The organization of the text is easy to follow and comprehend.

All of the supplementary images (e.g., tables and figures) were beneficial to the reader and enhanced the text.

There are no significant grammatical errors.

I did not find any culturally offensive or insensitive references in the text.

This text does the difficult job of introducing the complicated concepts and processes of quantitative research in a quick and easy reference guide fairly well. I would not depend solely on this text to teach students about quantitative research, but it could be a good jumping off point for those who have no prior knowledge on this subject or those who need a gentle introduction before diving in to more advanced and complex readings of quantitative research methods.

Reviewed by J. Marlie Henry, Adjunct Faculty, University of Saint Francis on 12/9/21

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of... read more

Considering the length of this guide, this does a good job of addressing major areas that typically need to be addressed. There is a contents section. The guide does seem to be organized accordingly with appropriate alignment and logical flow of thought. There is no glossary but, for a guide of this length, a glossary does not seem like it would enhance the guide significantly.

The content is relatively accurate. Expanding the content a bit more or explaining that the methods and designs presented are not entirely inclusive would help. As there are different schools of thought regarding what should/should not be included in terms of these designs and methods, simply bringing attention to that and explaining a bit more would help.

Relevance/Longevity rating: 3

This content needs to be updated. Most of the sources cited are seven or more years old. Even more, it would be helpful to see more currently relevant examples. Some of the source authors such as Andy Field provide very interesting and dynamic instruction in general, but they have much more current information available.

The language used is clear and appropriate. Unnecessary jargon is not used. The intent is clear- to communicate simply in a straightforward manner.

The guide seems to be internally consistent in terms of terminology and framework. There do not seem to be issues in this area. Terminology is internally consistent.

For a guide of this length, the author structured this logically into sections. This guide could be adopted in whole or by section with limited modifications. Courses with fewer than seven modules could also logically group some of the sections.

This guide does present with logical organization. The topics presented are conceptually sequenced in a manner that helps learners build logically on prior conceptualization. This also provides a simple conceptual framework for instructors to guide learners through the process.

Interface rating: 4

The visuals themselves are simple, but they are clear and understandable without distracting the learner. The purpose is clear- that of learning rather than visuals for the sake of visuals. Likewise, navigation is clear and without issues beyond a broken link (the last source noted in the references).

This guide seems to be free of grammatical errors.

It would be interesting to see more cultural integration in a guide of this nature, but the guide is not culturally insensitive or offensive in any way. The language used seems to be consistent with APA's guidelines for unbiased language.

Reviewed by Heng Yu-Ku, Professor, University of Northern Colorado on 5/13/21

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive... read more

The text covers all areas and ideas appropriately and provides practical tables, charts, and examples throughout the text. I would suggest the author also provides a complete research proposal at the end of Section 3 (page 10) and a comprehensive research study as an Appendix after section 7 (page 26) to help readers comprehend information better.

For the most part, the content is accurate and unbiased. However, the author only includes four types of research designs used on the social sciences that contain quantitative elements: 1. Mixed method, 2) Case study, 3) Quasi-experiment, and 3) Action research. I wonder why the correlational research is not included as another type of quantitative research design as it has been introduced and emphasized in section 6 by the author.

I believe the content is up-to-date and that necessary updates will be relatively easy and straightforward to implement.

The text is easy to read and provides adequate context for any technical terminology used. However, the author could provide more detailed information about estimating the minimum sample size but not just refer the readers to use the online sample calculators at a different website.

The text is internally consistent in terms of terminology and framework. The author provides the right amount of information with additional information or resources for the readers.

The text includes seven sections. Therefore, it is easier for the instructor to allocate or divide the content into different weeks of instruction within the course.

Yes, the topics in the text are presented in a logical and clear fashion. The author provides clear and precise terminologies, summarizes important content in Table or Figure forms, and offers examples in each section for readers to check their understanding.

The interface of the book is consistent and clear, and all the images and charts provided in the book are appropriate. However, I did encounter some navigation problems as a couple of links are not working or requires permission to access those (pages 10 and 27).

No grammatical errors were found.

No culturally incentive or offensive in its language and the examples provided were found.

As the book title stated, this book provides “A Quick Guide to Quantitative Research in Social Science. It offers easy-to-read information and introduces the readers to the research process, such as research questions, research paradigms, research process, research designs, research methods, data collection, data analysis, and data discussion. However, some links are not working or need permissions to access them (pages 10 and 27).

Reviewed by Hsiao-Chin Kuo, Assistant Professor, Northeastern Illinois University on 4/26/21, updated 4/28/21

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and... read more

As a quick guide, it covers basic concepts related to quantitative research. It starts with WHY quantitative research with regard to asking research questions and considering research paradigms, then provides an overview of research design and process, discusses methods, data collection and analysis, and ends with writing a research report. It also identifies its target readers/users as those begins to explore quantitative research. It would be helpful to include more examples for readers/users who are new to quantitative research.

Its content is mostly accurate and no bias given its nature as a quick guide. Yet, it is also quite simplified, such as its explanations of mixed methods, case study, quasi-experimental research, and action research. It provides resources for extended reading, yet more recent works will be helpful.

The book is relevant given its nature as a quick guide. It would be helpful to provide more recent works in its resources for extended reading, such as the section for Survey Research (p. 12). It would also be helpful to include more information to introduce common tools and software for statistical analysis.

The book is written with clear and understandable language. Important terms and concepts are presented with plain explanations and examples. Figures and tables are also presented to support its clarity. For example, Table 4 (p. 20) gives an easy-to-follow overview of different statistical tests.

The framework is very consistent with key points, further explanations, examples, and resources for extended reading. The sample studies are presented following the layout of the content, such as research questions, design and methods, and analysis. These examples help reinforce readers' understanding of these common research elements.

The book is divided into seven chapters. Each chapter clearly discusses an aspect of quantitative research. It can be easily divided into modules for a class or for a theme in a research method class. Chapters are short and provides additional resources for extended reading.

The topics in the chapters are presented in a logical and clear structure. It is easy to follow to a degree. Though, it would be also helpful to include the chapter number and title in the header next to its page number.

The text is easy to navigate. Most of the figures and tables are displayed clearly. Yet, there are several sections with empty space that is a bit confusing in the beginning. Again, it can be helpful to include the chapter number/title next to its page number.

Grammatical Errors rating: 4

No major grammatical errors were found.

There are no cultural insensitivities noted.

Given the nature and purpose of this book, as a quick guide, it provides readers a quick reference for important concepts and terms related to quantitative research. Because this book is quite short (27 pages), it can be used as an overview/preview about quantitative research. Teacher's facilitation/input and extended readings will be needed for a deeper learning and discussion about aspects of quantitative research.

Reviewed by Yang Cheng, Assistant Professor, North Carolina State University on 1/6/21

It covers the most important topics such as research progress, resources, measurement, and analysis of the data. read more

It covers the most important topics such as research progress, resources, measurement, and analysis of the data.

The book accurately describes the types of research methods such as mixed-method, quasi-experiment, and case study. It talks about the research proposal and key differences between statistical analyses as well.

The book pinpointed the significance of running a quantitative research method and its relevance to the field of social science.

The book clearly tells us the differences between types of quantitative methods and the steps of running quantitative research for students.

The book is consistent in terms of terminologies such as research methods or types of statistical analysis.

It addresses the headlines and subheadlines very well and each subheading should be necessary for readers.

The book was organized very well to illustrate the topic of quantitative methods in the field of social science.

The pictures within the book could be further developed to describe the key concepts vividly.

The textbook contains no grammatical errors.

It is not culturally offensive in any way.

Overall, this is a simple and quick guide for this important topic. It should be valuable for undergraduate students who would like to learn more about research methods.

Reviewed by Pierre Lu, Associate Professor, University of Texas Rio Grande Valley on 11/20/20

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas. read more

As a quick guide to quantitative research in social sciences, the text covers most ideas and areas.

Mostly accurate content.

As a quick guide, content is highly relevant.

Succinct and clear.

Internally, the text is consistent in terms of terminology used.

The text is easily and readily divisible into smaller sections that can be used as assignments.

I like that there are examples throughout the book.

Easy to read. No interface/ navigation problems.

No grammatical errors detected.

I am not aware of the culturally insensitive description. After all, this is a methodology book.

I think the book has potential to be adopted as a foundation for quantitative research courses, or as a review in the first weeks in advanced quantitative course.

Reviewed by Sarah Fischer, Assistant Professor, Marymount University on 7/31/20

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable). read more

It is meant to be an overview, but it incredibly condensed and spends almost no time on key elements of statistics (such as what makes research generalizable, or what leads to research NOT being generalizable).

Content Accuracy rating: 1

Contains VERY significant errors, such as saying that one can "accept" a hypothesis. (One of the key aspect of hypothesis testing is that one either rejects or fails to reject a hypothesis, but NEVER accepts a hypothesis.)

Very relevant to those experiencing the research process for the first time. However, it is written by someone working in the natural sciences but is a text for social sciences. This does not explain the errors, but does explain why sometimes the author assumes things about the readers ("hail from more subjectivist territory") that are likely not true.

Clarity rating: 3

Some statistical terminology not explained clearly (or accurately), although the author has made attempts to do both.

Very consistently laid out.

Chapters are very short yet also point readers to outside texts for additional information. Easy to follow.

Generally logically organized.

Easy to navigate, images clear. The additional sources included need to linked to.

Minor grammatical and usage errors throughout the text.

Makes efforts to be inclusive.

The idea of this book is strong--short guides like this are needed. However, this book would likely be strengthened by a revision to reduce inaccuracies and improve the definitions and technical explanations of statistical concepts. Since the book is specifically aimed at the social sciences, it would also improve the text to have more examples that are based in the social sciences (rather than the health sciences or the arts).

Reviewed by Michelle Page, Assistant Professor, Worcester State University on 5/30/20

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new... read more

This text is exactly intended to be what it says: A quick guide. A basic outline of quantitative research processes, akin to cliff notes. The content provides only the essentials of a research process and contains key terms. A student or new researcher would not be able to use this as a stand alone guide for quantitative pursuits without having a supplemental text that explains the steps in the process more comprehensively. The introduction does provide this caveat.

Content Accuracy rating: 3

There are no biases or errors that could be distinguished; however, it’s simplicity in content, although accurate for an outline of process, may lack a conveyance of the deeper meanings behind the specific processes explained about qualitative research.

The content is outlined in traditional format to highlight quantitative considerations for formatting research foundational pieces. The resources/references used to point the reader to literature sources can be easily updated with future editions.

The jargon in the text is simple to follow and provides adequate context for its purpose. It is simplified for its intention as a guide which is appropriate.

Each section of the text follows a consistent flow. Explanation of the research content or concept is defined and then a connection to literature is provided to expand the readers understanding of the section’s content. Terminology is consistent with the qualitative process.

As an “outline” and guide, this text can be used to quickly identify the critical parts of the quantitative process. Although each section does not provide deeper content for meaningful use as a stand alone text, it’s utility would be excellent as a reference for a course and can be used as an content guide for specific research courses.

The text’s outline and content are aligned and are in a logical flow in terms of the research considerations for quantitative research.

The only issue that the format was not able to provide was linkable articles. These would have to be cut and pasted into a browser. Functional clickable links in a text are very successful at leading the reader to the supplemental material.

No grammatical errors were noted.

This is a very good outline “guide” to help a new or student researcher to demystify the quantitative process. A successful outline of any process helps to guide work in a logical and systematic way. I think this simple guide is a great adjunct to more substantial research context.

Table of Contents

  • Section 1: What will this resource do for you?
  • Section 2: Why are you thinking about numbers? A discussion of the research question and paradigms.
  • Section 3: An overview of the Research Process and Research Designs
  • Section 4: Quantitative Research Methods
  • Section 5: the data obtained from quantitative research
  • Section 6: Analysis of data
  • Section 7: Discussing your Results

Ancillary Material

About the book.

This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for maths, then this booklet should be a real help.

The booklet was amended in 2022 to take into account previous review comments.  

About the Contributors

Christine Davies , Ph.D

Contribute to this Page

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • J Korean Med Sci
  • v.37(16); 2022 Apr 25

Logo of jkms

A Practical Guide to Writing Quantitative and Qualitative Research Questions and Hypotheses in Scholarly Articles

Edward barroga.

1 Department of General Education, Graduate School of Nursing Science, St. Luke’s International University, Tokyo, Japan.

Glafera Janet Matanguihan

2 Department of Biological Sciences, Messiah University, Mechanicsburg, PA, USA.

The development of research questions and the subsequent hypotheses are prerequisites to defining the main research purpose and specific objectives of a study. Consequently, these objectives determine the study design and research outcome. The development of research questions is a process based on knowledge of current trends, cutting-edge studies, and technological advances in the research field. Excellent research questions are focused and require a comprehensive literature search and in-depth understanding of the problem being investigated. Initially, research questions may be written as descriptive questions which could be developed into inferential questions. These questions must be specific and concise to provide a clear foundation for developing hypotheses. Hypotheses are more formal predictions about the research outcomes. These specify the possible results that may or may not be expected regarding the relationship between groups. Thus, research questions and hypotheses clarify the main purpose and specific objectives of the study, which in turn dictate the design of the study, its direction, and outcome. Studies developed from good research questions and hypotheses will have trustworthy outcomes with wide-ranging social and health implications.

INTRODUCTION

Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses. 1 , 2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results. 3 , 4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the inception of novel studies and the ethical testing of ideas. 5 , 6

It is crucial to have knowledge of both quantitative and qualitative research 2 as both types of research involve writing research questions and hypotheses. 7 However, these crucial elements of research are sometimes overlooked; if not overlooked, then framed without the forethought and meticulous attention it needs. Planning and careful consideration are needed when developing quantitative or qualitative research, particularly when conceptualizing research questions and hypotheses. 4

There is a continuing need to support researchers in the creation of innovative research questions and hypotheses, as well as for journal articles that carefully review these elements. 1 When research questions and hypotheses are not carefully thought of, unethical studies and poor outcomes usually ensue. Carefully formulated research questions and hypotheses define well-founded objectives, which in turn determine the appropriate design, course, and outcome of the study. This article then aims to discuss in detail the various aspects of crafting research questions and hypotheses, with the goal of guiding researchers as they develop their own. Examples from the authors and peer-reviewed scientific articles in the healthcare field are provided to illustrate key points.

DEFINITIONS AND RELATIONSHIP OF RESEARCH QUESTIONS AND HYPOTHESES

A research question is what a study aims to answer after data analysis and interpretation. The answer is written in length in the discussion section of the paper. Thus, the research question gives a preview of the different parts and variables of the study meant to address the problem posed in the research question. 1 An excellent research question clarifies the research writing while facilitating understanding of the research topic, objective, scope, and limitations of the study. 5

On the other hand, a research hypothesis is an educated statement of an expected outcome. This statement is based on background research and current knowledge. 8 , 9 The research hypothesis makes a specific prediction about a new phenomenon 10 or a formal statement on the expected relationship between an independent variable and a dependent variable. 3 , 11 It provides a tentative answer to the research question to be tested or explored. 4

Hypotheses employ reasoning to predict a theory-based outcome. 10 These can also be developed from theories by focusing on components of theories that have not yet been observed. 10 The validity of hypotheses is often based on the testability of the prediction made in a reproducible experiment. 8

Conversely, hypotheses can also be rephrased as research questions. Several hypotheses based on existing theories and knowledge may be needed to answer a research question. Developing ethical research questions and hypotheses creates a research design that has logical relationships among variables. These relationships serve as a solid foundation for the conduct of the study. 4 , 11 Haphazardly constructed research questions can result in poorly formulated hypotheses and improper study designs, leading to unreliable results. Thus, the formulations of relevant research questions and verifiable hypotheses are crucial when beginning research. 12

CHARACTERISTICS OF GOOD RESEARCH QUESTIONS AND HYPOTHESES

Excellent research questions are specific and focused. These integrate collective data and observations to confirm or refute the subsequent hypotheses. Well-constructed hypotheses are based on previous reports and verify the research context. These are realistic, in-depth, sufficiently complex, and reproducible. More importantly, these hypotheses can be addressed and tested. 13

There are several characteristics of well-developed hypotheses. Good hypotheses are 1) empirically testable 7 , 10 , 11 , 13 ; 2) backed by preliminary evidence 9 ; 3) testable by ethical research 7 , 9 ; 4) based on original ideas 9 ; 5) have evidenced-based logical reasoning 10 ; and 6) can be predicted. 11 Good hypotheses can infer ethical and positive implications, indicating the presence of a relationship or effect relevant to the research theme. 7 , 11 These are initially developed from a general theory and branch into specific hypotheses by deductive reasoning. In the absence of a theory to base the hypotheses, inductive reasoning based on specific observations or findings form more general hypotheses. 10

TYPES OF RESEARCH QUESTIONS AND HYPOTHESES

Research questions and hypotheses are developed according to the type of research, which can be broadly classified into quantitative and qualitative research. We provide a summary of the types of research questions and hypotheses under quantitative and qualitative research categories in Table 1 .

Quantitative research questionsQuantitative research hypotheses
Descriptive research questionsSimple hypothesis
Comparative research questionsComplex hypothesis
Relationship research questionsDirectional hypothesis
Non-directional hypothesis
Associative hypothesis
Causal hypothesis
Null hypothesis
Alternative hypothesis
Working hypothesis
Statistical hypothesis
Logical hypothesis
Hypothesis-testing
Qualitative research questionsQualitative research hypotheses
Contextual research questionsHypothesis-generating
Descriptive research questions
Evaluation research questions
Explanatory research questions
Exploratory research questions
Generative research questions
Ideological research questions
Ethnographic research questions
Phenomenological research questions
Grounded theory questions
Qualitative case study questions

Research questions in quantitative research

In quantitative research, research questions inquire about the relationships among variables being investigated and are usually framed at the start of the study. These are precise and typically linked to the subject population, dependent and independent variables, and research design. 1 Research questions may also attempt to describe the behavior of a population in relation to one or more variables, or describe the characteristics of variables to be measured ( descriptive research questions ). 1 , 5 , 14 These questions may also aim to discover differences between groups within the context of an outcome variable ( comparative research questions ), 1 , 5 , 14 or elucidate trends and interactions among variables ( relationship research questions ). 1 , 5 We provide examples of descriptive, comparative, and relationship research questions in quantitative research in Table 2 .

Quantitative research questions
Descriptive research question
- Measures responses of subjects to variables
- Presents variables to measure, analyze, or assess
What is the proportion of resident doctors in the hospital who have mastered ultrasonography (response of subjects to a variable) as a diagnostic technique in their clinical training?
Comparative research question
- Clarifies difference between one group with outcome variable and another group without outcome variable
Is there a difference in the reduction of lung metastasis in osteosarcoma patients who received the vitamin D adjunctive therapy (group with outcome variable) compared with osteosarcoma patients who did not receive the vitamin D adjunctive therapy (group without outcome variable)?
- Compares the effects of variables
How does the vitamin D analogue 22-Oxacalcitriol (variable 1) mimic the antiproliferative activity of 1,25-Dihydroxyvitamin D (variable 2) in osteosarcoma cells?
Relationship research question
- Defines trends, association, relationships, or interactions between dependent variable and independent variable
Is there a relationship between the number of medical student suicide (dependent variable) and the level of medical student stress (independent variable) in Japan during the first wave of the COVID-19 pandemic?

Hypotheses in quantitative research

In quantitative research, hypotheses predict the expected relationships among variables. 15 Relationships among variables that can be predicted include 1) between a single dependent variable and a single independent variable ( simple hypothesis ) or 2) between two or more independent and dependent variables ( complex hypothesis ). 4 , 11 Hypotheses may also specify the expected direction to be followed and imply an intellectual commitment to a particular outcome ( directional hypothesis ) 4 . On the other hand, hypotheses may not predict the exact direction and are used in the absence of a theory, or when findings contradict previous studies ( non-directional hypothesis ). 4 In addition, hypotheses can 1) define interdependency between variables ( associative hypothesis ), 4 2) propose an effect on the dependent variable from manipulation of the independent variable ( causal hypothesis ), 4 3) state a negative relationship between two variables ( null hypothesis ), 4 , 11 , 15 4) replace the working hypothesis if rejected ( alternative hypothesis ), 15 explain the relationship of phenomena to possibly generate a theory ( working hypothesis ), 11 5) involve quantifiable variables that can be tested statistically ( statistical hypothesis ), 11 6) or express a relationship whose interlinks can be verified logically ( logical hypothesis ). 11 We provide examples of simple, complex, directional, non-directional, associative, causal, null, alternative, working, statistical, and logical hypotheses in quantitative research, as well as the definition of quantitative hypothesis-testing research in Table 3 .

Quantitative research hypotheses
Simple hypothesis
- Predicts relationship between single dependent variable and single independent variable
If the dose of the new medication (single independent variable) is high, blood pressure (single dependent variable) is lowered.
Complex hypothesis
- Foretells relationship between two or more independent and dependent variables
The higher the use of anticancer drugs, radiation therapy, and adjunctive agents (3 independent variables), the higher would be the survival rate (1 dependent variable).
Directional hypothesis
- Identifies study direction based on theory towards particular outcome to clarify relationship between variables
Privately funded research projects will have a larger international scope (study direction) than publicly funded research projects.
Non-directional hypothesis
- Nature of relationship between two variables or exact study direction is not identified
- Does not involve a theory
Women and men are different in terms of helpfulness. (Exact study direction is not identified)
Associative hypothesis
- Describes variable interdependency
- Change in one variable causes change in another variable
A larger number of people vaccinated against COVID-19 in the region (change in independent variable) will reduce the region’s incidence of COVID-19 infection (change in dependent variable).
Causal hypothesis
- An effect on dependent variable is predicted from manipulation of independent variable
A change into a high-fiber diet (independent variable) will reduce the blood sugar level (dependent variable) of the patient.
Null hypothesis
- A negative statement indicating no relationship or difference between 2 variables
There is no significant difference in the severity of pulmonary metastases between the new drug (variable 1) and the current drug (variable 2).
Alternative hypothesis
- Following a null hypothesis, an alternative hypothesis predicts a relationship between 2 study variables
The new drug (variable 1) is better on average in reducing the level of pain from pulmonary metastasis than the current drug (variable 2).
Working hypothesis
- A hypothesis that is initially accepted for further research to produce a feasible theory
Dairy cows fed with concentrates of different formulations will produce different amounts of milk.
Statistical hypothesis
- Assumption about the value of population parameter or relationship among several population characteristics
- Validity tested by a statistical experiment or analysis
The mean recovery rate from COVID-19 infection (value of population parameter) is not significantly different between population 1 and population 2.
There is a positive correlation between the level of stress at the workplace and the number of suicides (population characteristics) among working people in Japan.
Logical hypothesis
- Offers or proposes an explanation with limited or no extensive evidence
If healthcare workers provide more educational programs about contraception methods, the number of adolescent pregnancies will be less.
Hypothesis-testing (Quantitative hypothesis-testing research)
- Quantitative research uses deductive reasoning.
- This involves the formation of a hypothesis, collection of data in the investigation of the problem, analysis and use of the data from the investigation, and drawing of conclusions to validate or nullify the hypotheses.

Research questions in qualitative research

Unlike research questions in quantitative research, research questions in qualitative research are usually continuously reviewed and reformulated. The central question and associated subquestions are stated more than the hypotheses. 15 The central question broadly explores a complex set of factors surrounding the central phenomenon, aiming to present the varied perspectives of participants. 15

There are varied goals for which qualitative research questions are developed. These questions can function in several ways, such as to 1) identify and describe existing conditions ( contextual research question s); 2) describe a phenomenon ( descriptive research questions ); 3) assess the effectiveness of existing methods, protocols, theories, or procedures ( evaluation research questions ); 4) examine a phenomenon or analyze the reasons or relationships between subjects or phenomena ( explanatory research questions ); or 5) focus on unknown aspects of a particular topic ( exploratory research questions ). 5 In addition, some qualitative research questions provide new ideas for the development of theories and actions ( generative research questions ) or advance specific ideologies of a position ( ideological research questions ). 1 Other qualitative research questions may build on a body of existing literature and become working guidelines ( ethnographic research questions ). Research questions may also be broadly stated without specific reference to the existing literature or a typology of questions ( phenomenological research questions ), may be directed towards generating a theory of some process ( grounded theory questions ), or may address a description of the case and the emerging themes ( qualitative case study questions ). 15 We provide examples of contextual, descriptive, evaluation, explanatory, exploratory, generative, ideological, ethnographic, phenomenological, grounded theory, and qualitative case study research questions in qualitative research in Table 4 , and the definition of qualitative hypothesis-generating research in Table 5 .

Qualitative research questions
Contextual research question
- Ask the nature of what already exists
- Individuals or groups function to further clarify and understand the natural context of real-world problems
What are the experiences of nurses working night shifts in healthcare during the COVID-19 pandemic? (natural context of real-world problems)
Descriptive research question
- Aims to describe a phenomenon
What are the different forms of disrespect and abuse (phenomenon) experienced by Tanzanian women when giving birth in healthcare facilities?
Evaluation research question
- Examines the effectiveness of existing practice or accepted frameworks
How effective are decision aids (effectiveness of existing practice) in helping decide whether to give birth at home or in a healthcare facility?
Explanatory research question
- Clarifies a previously studied phenomenon and explains why it occurs
Why is there an increase in teenage pregnancy (phenomenon) in Tanzania?
Exploratory research question
- Explores areas that have not been fully investigated to have a deeper understanding of the research problem
What factors affect the mental health of medical students (areas that have not yet been fully investigated) during the COVID-19 pandemic?
Generative research question
- Develops an in-depth understanding of people’s behavior by asking ‘how would’ or ‘what if’ to identify problems and find solutions
How would the extensive research experience of the behavior of new staff impact the success of the novel drug initiative?
Ideological research question
- Aims to advance specific ideas or ideologies of a position
Are Japanese nurses who volunteer in remote African hospitals able to promote humanized care of patients (specific ideas or ideologies) in the areas of safe patient environment, respect of patient privacy, and provision of accurate information related to health and care?
Ethnographic research question
- Clarifies peoples’ nature, activities, their interactions, and the outcomes of their actions in specific settings
What are the demographic characteristics, rehabilitative treatments, community interactions, and disease outcomes (nature, activities, their interactions, and the outcomes) of people in China who are suffering from pneumoconiosis?
Phenomenological research question
- Knows more about the phenomena that have impacted an individual
What are the lived experiences of parents who have been living with and caring for children with a diagnosis of autism? (phenomena that have impacted an individual)
Grounded theory question
- Focuses on social processes asking about what happens and how people interact, or uncovering social relationships and behaviors of groups
What are the problems that pregnant adolescents face in terms of social and cultural norms (social processes), and how can these be addressed?
Qualitative case study question
- Assesses a phenomenon using different sources of data to answer “why” and “how” questions
- Considers how the phenomenon is influenced by its contextual situation.
How does quitting work and assuming the role of a full-time mother (phenomenon assessed) change the lives of women in Japan?
Qualitative research hypotheses
Hypothesis-generating (Qualitative hypothesis-generating research)
- Qualitative research uses inductive reasoning.
- This involves data collection from study participants or the literature regarding a phenomenon of interest, using the collected data to develop a formal hypothesis, and using the formal hypothesis as a framework for testing the hypothesis.
- Qualitative exploratory studies explore areas deeper, clarifying subjective experience and allowing formulation of a formal hypothesis potentially testable in a future quantitative approach.

Qualitative studies usually pose at least one central research question and several subquestions starting with How or What . These research questions use exploratory verbs such as explore or describe . These also focus on one central phenomenon of interest, and may mention the participants and research site. 15

Hypotheses in qualitative research

Hypotheses in qualitative research are stated in the form of a clear statement concerning the problem to be investigated. Unlike in quantitative research where hypotheses are usually developed to be tested, qualitative research can lead to both hypothesis-testing and hypothesis-generating outcomes. 2 When studies require both quantitative and qualitative research questions, this suggests an integrative process between both research methods wherein a single mixed-methods research question can be developed. 1

FRAMEWORKS FOR DEVELOPING RESEARCH QUESTIONS AND HYPOTHESES

Research questions followed by hypotheses should be developed before the start of the study. 1 , 12 , 14 It is crucial to develop feasible research questions on a topic that is interesting to both the researcher and the scientific community. This can be achieved by a meticulous review of previous and current studies to establish a novel topic. Specific areas are subsequently focused on to generate ethical research questions. The relevance of the research questions is evaluated in terms of clarity of the resulting data, specificity of the methodology, objectivity of the outcome, depth of the research, and impact of the study. 1 , 5 These aspects constitute the FINER criteria (i.e., Feasible, Interesting, Novel, Ethical, and Relevant). 1 Clarity and effectiveness are achieved if research questions meet the FINER criteria. In addition to the FINER criteria, Ratan et al. described focus, complexity, novelty, feasibility, and measurability for evaluating the effectiveness of research questions. 14

The PICOT and PEO frameworks are also used when developing research questions. 1 The following elements are addressed in these frameworks, PICOT: P-population/patients/problem, I-intervention or indicator being studied, C-comparison group, O-outcome of interest, and T-timeframe of the study; PEO: P-population being studied, E-exposure to preexisting conditions, and O-outcome of interest. 1 Research questions are also considered good if these meet the “FINERMAPS” framework: Feasible, Interesting, Novel, Ethical, Relevant, Manageable, Appropriate, Potential value/publishable, and Systematic. 14

As we indicated earlier, research questions and hypotheses that are not carefully formulated result in unethical studies or poor outcomes. To illustrate this, we provide some examples of ambiguous research question and hypotheses that result in unclear and weak research objectives in quantitative research ( Table 6 ) 16 and qualitative research ( Table 7 ) 17 , and how to transform these ambiguous research question(s) and hypothesis(es) into clear and good statements.

VariablesUnclear and weak statement (Statement 1) Clear and good statement (Statement 2) Points to avoid
Research questionWhich is more effective between smoke moxibustion and smokeless moxibustion?“Moreover, regarding smoke moxibustion versus smokeless moxibustion, it remains unclear which is more effective, safe, and acceptable to pregnant women, and whether there is any difference in the amount of heat generated.” 1) Vague and unfocused questions
2) Closed questions simply answerable by yes or no
3) Questions requiring a simple choice
HypothesisThe smoke moxibustion group will have higher cephalic presentation.“Hypothesis 1. The smoke moxibustion stick group (SM group) and smokeless moxibustion stick group (-SLM group) will have higher rates of cephalic presentation after treatment than the control group.1) Unverifiable hypotheses
Hypothesis 2. The SM group and SLM group will have higher rates of cephalic presentation at birth than the control group.2) Incompletely stated groups of comparison
Hypothesis 3. There will be no significant differences in the well-being of the mother and child among the three groups in terms of the following outcomes: premature birth, premature rupture of membranes (PROM) at < 37 weeks, Apgar score < 7 at 5 min, umbilical cord blood pH < 7.1, admission to neonatal intensive care unit (NICU), and intrauterine fetal death.” 3) Insufficiently described variables or outcomes
Research objectiveTo determine which is more effective between smoke moxibustion and smokeless moxibustion.“The specific aims of this pilot study were (a) to compare the effects of smoke moxibustion and smokeless moxibustion treatments with the control group as a possible supplement to ECV for converting breech presentation to cephalic presentation and increasing adherence to the newly obtained cephalic position, and (b) to assess the effects of these treatments on the well-being of the mother and child.” 1) Poor understanding of the research question and hypotheses
2) Insufficient description of population, variables, or study outcomes

a These statements were composed for comparison and illustrative purposes only.

b These statements are direct quotes from Higashihara and Horiuchi. 16

VariablesUnclear and weak statement (Statement 1)Clear and good statement (Statement 2)Points to avoid
Research questionDoes disrespect and abuse (D&A) occur in childbirth in Tanzania?How does disrespect and abuse (D&A) occur and what are the types of physical and psychological abuses observed in midwives’ actual care during facility-based childbirth in urban Tanzania?1) Ambiguous or oversimplistic questions
2) Questions unverifiable by data collection and analysis
HypothesisDisrespect and abuse (D&A) occur in childbirth in Tanzania.Hypothesis 1: Several types of physical and psychological abuse by midwives in actual care occur during facility-based childbirth in urban Tanzania.1) Statements simply expressing facts
Hypothesis 2: Weak nursing and midwifery management contribute to the D&A of women during facility-based childbirth in urban Tanzania.2) Insufficiently described concepts or variables
Research objectiveTo describe disrespect and abuse (D&A) in childbirth in Tanzania.“This study aimed to describe from actual observations the respectful and disrespectful care received by women from midwives during their labor period in two hospitals in urban Tanzania.” 1) Statements unrelated to the research question and hypotheses
2) Unattainable or unexplorable objectives

a This statement is a direct quote from Shimoda et al. 17

The other statements were composed for comparison and illustrative purposes only.

CONSTRUCTING RESEARCH QUESTIONS AND HYPOTHESES

To construct effective research questions and hypotheses, it is very important to 1) clarify the background and 2) identify the research problem at the outset of the research, within a specific timeframe. 9 Then, 3) review or conduct preliminary research to collect all available knowledge about the possible research questions by studying theories and previous studies. 18 Afterwards, 4) construct research questions to investigate the research problem. Identify variables to be accessed from the research questions 4 and make operational definitions of constructs from the research problem and questions. Thereafter, 5) construct specific deductive or inductive predictions in the form of hypotheses. 4 Finally, 6) state the study aims . This general flow for constructing effective research questions and hypotheses prior to conducting research is shown in Fig. 1 .

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g001.jpg

Research questions are used more frequently in qualitative research than objectives or hypotheses. 3 These questions seek to discover, understand, explore or describe experiences by asking “What” or “How.” The questions are open-ended to elicit a description rather than to relate variables or compare groups. The questions are continually reviewed, reformulated, and changed during the qualitative study. 3 Research questions are also used more frequently in survey projects than hypotheses in experiments in quantitative research to compare variables and their relationships.

Hypotheses are constructed based on the variables identified and as an if-then statement, following the template, ‘If a specific action is taken, then a certain outcome is expected.’ At this stage, some ideas regarding expectations from the research to be conducted must be drawn. 18 Then, the variables to be manipulated (independent) and influenced (dependent) are defined. 4 Thereafter, the hypothesis is stated and refined, and reproducible data tailored to the hypothesis are identified, collected, and analyzed. 4 The hypotheses must be testable and specific, 18 and should describe the variables and their relationships, the specific group being studied, and the predicted research outcome. 18 Hypotheses construction involves a testable proposition to be deduced from theory, and independent and dependent variables to be separated and measured separately. 3 Therefore, good hypotheses must be based on good research questions constructed at the start of a study or trial. 12

In summary, research questions are constructed after establishing the background of the study. Hypotheses are then developed based on the research questions. Thus, it is crucial to have excellent research questions to generate superior hypotheses. In turn, these would determine the research objectives and the design of the study, and ultimately, the outcome of the research. 12 Algorithms for building research questions and hypotheses are shown in Fig. 2 for quantitative research and in Fig. 3 for qualitative research.

An external file that holds a picture, illustration, etc.
Object name is jkms-37-e121-g002.jpg

EXAMPLES OF RESEARCH QUESTIONS FROM PUBLISHED ARTICLES

  • EXAMPLE 1. Descriptive research question (quantitative research)
  • - Presents research variables to be assessed (distinct phenotypes and subphenotypes)
  • “BACKGROUND: Since COVID-19 was identified, its clinical and biological heterogeneity has been recognized. Identifying COVID-19 phenotypes might help guide basic, clinical, and translational research efforts.
  • RESEARCH QUESTION: Does the clinical spectrum of patients with COVID-19 contain distinct phenotypes and subphenotypes? ” 19
  • EXAMPLE 2. Relationship research question (quantitative research)
  • - Shows interactions between dependent variable (static postural control) and independent variable (peripheral visual field loss)
  • “Background: Integration of visual, vestibular, and proprioceptive sensations contributes to postural control. People with peripheral visual field loss have serious postural instability. However, the directional specificity of postural stability and sensory reweighting caused by gradual peripheral visual field loss remain unclear.
  • Research question: What are the effects of peripheral visual field loss on static postural control ?” 20
  • EXAMPLE 3. Comparative research question (quantitative research)
  • - Clarifies the difference among groups with an outcome variable (patients enrolled in COMPERA with moderate PH or severe PH in COPD) and another group without the outcome variable (patients with idiopathic pulmonary arterial hypertension (IPAH))
  • “BACKGROUND: Pulmonary hypertension (PH) in COPD is a poorly investigated clinical condition.
  • RESEARCH QUESTION: Which factors determine the outcome of PH in COPD?
  • STUDY DESIGN AND METHODS: We analyzed the characteristics and outcome of patients enrolled in the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA) with moderate or severe PH in COPD as defined during the 6th PH World Symposium who received medical therapy for PH and compared them with patients with idiopathic pulmonary arterial hypertension (IPAH) .” 21
  • EXAMPLE 4. Exploratory research question (qualitative research)
  • - Explores areas that have not been fully investigated (perspectives of families and children who receive care in clinic-based child obesity treatment) to have a deeper understanding of the research problem
  • “Problem: Interventions for children with obesity lead to only modest improvements in BMI and long-term outcomes, and data are limited on the perspectives of families of children with obesity in clinic-based treatment. This scoping review seeks to answer the question: What is known about the perspectives of families and children who receive care in clinic-based child obesity treatment? This review aims to explore the scope of perspectives reported by families of children with obesity who have received individualized outpatient clinic-based obesity treatment.” 22
  • EXAMPLE 5. Relationship research question (quantitative research)
  • - Defines interactions between dependent variable (use of ankle strategies) and independent variable (changes in muscle tone)
  • “Background: To maintain an upright standing posture against external disturbances, the human body mainly employs two types of postural control strategies: “ankle strategy” and “hip strategy.” While it has been reported that the magnitude of the disturbance alters the use of postural control strategies, it has not been elucidated how the level of muscle tone, one of the crucial parameters of bodily function, determines the use of each strategy. We have previously confirmed using forward dynamics simulations of human musculoskeletal models that an increased muscle tone promotes the use of ankle strategies. The objective of the present study was to experimentally evaluate a hypothesis: an increased muscle tone promotes the use of ankle strategies. Research question: Do changes in the muscle tone affect the use of ankle strategies ?” 23

EXAMPLES OF HYPOTHESES IN PUBLISHED ARTICLES

  • EXAMPLE 1. Working hypothesis (quantitative research)
  • - A hypothesis that is initially accepted for further research to produce a feasible theory
  • “As fever may have benefit in shortening the duration of viral illness, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response when taken during the early stages of COVID-19 illness .” 24
  • “In conclusion, it is plausible to hypothesize that the antipyretic efficacy of ibuprofen may be hindering the benefits of a fever response . The difference in perceived safety of these agents in COVID-19 illness could be related to the more potent efficacy to reduce fever with ibuprofen compared to acetaminophen. Compelling data on the benefit of fever warrant further research and review to determine when to treat or withhold ibuprofen for early stage fever for COVID-19 and other related viral illnesses .” 24
  • EXAMPLE 2. Exploratory hypothesis (qualitative research)
  • - Explores particular areas deeper to clarify subjective experience and develop a formal hypothesis potentially testable in a future quantitative approach
  • “We hypothesized that when thinking about a past experience of help-seeking, a self distancing prompt would cause increased help-seeking intentions and more favorable help-seeking outcome expectations .” 25
  • “Conclusion
  • Although a priori hypotheses were not supported, further research is warranted as results indicate the potential for using self-distancing approaches to increasing help-seeking among some people with depressive symptomatology.” 25
  • EXAMPLE 3. Hypothesis-generating research to establish a framework for hypothesis testing (qualitative research)
  • “We hypothesize that compassionate care is beneficial for patients (better outcomes), healthcare systems and payers (lower costs), and healthcare providers (lower burnout). ” 26
  • Compassionomics is the branch of knowledge and scientific study of the effects of compassionate healthcare. Our main hypotheses are that compassionate healthcare is beneficial for (1) patients, by improving clinical outcomes, (2) healthcare systems and payers, by supporting financial sustainability, and (3) HCPs, by lowering burnout and promoting resilience and well-being. The purpose of this paper is to establish a scientific framework for testing the hypotheses above . If these hypotheses are confirmed through rigorous research, compassionomics will belong in the science of evidence-based medicine, with major implications for all healthcare domains.” 26
  • EXAMPLE 4. Statistical hypothesis (quantitative research)
  • - An assumption is made about the relationship among several population characteristics ( gender differences in sociodemographic and clinical characteristics of adults with ADHD ). Validity is tested by statistical experiment or analysis ( chi-square test, Students t-test, and logistic regression analysis)
  • “Our research investigated gender differences in sociodemographic and clinical characteristics of adults with ADHD in a Japanese clinical sample. Due to unique Japanese cultural ideals and expectations of women's behavior that are in opposition to ADHD symptoms, we hypothesized that women with ADHD experience more difficulties and present more dysfunctions than men . We tested the following hypotheses: first, women with ADHD have more comorbidities than men with ADHD; second, women with ADHD experience more social hardships than men, such as having less full-time employment and being more likely to be divorced.” 27
  • “Statistical Analysis
  • ( text omitted ) Between-gender comparisons were made using the chi-squared test for categorical variables and Students t-test for continuous variables…( text omitted ). A logistic regression analysis was performed for employment status, marital status, and comorbidity to evaluate the independent effects of gender on these dependent variables.” 27

EXAMPLES OF HYPOTHESIS AS WRITTEN IN PUBLISHED ARTICLES IN RELATION TO OTHER PARTS

  • EXAMPLE 1. Background, hypotheses, and aims are provided
  • “Pregnant women need skilled care during pregnancy and childbirth, but that skilled care is often delayed in some countries …( text omitted ). The focused antenatal care (FANC) model of WHO recommends that nurses provide information or counseling to all pregnant women …( text omitted ). Job aids are visual support materials that provide the right kind of information using graphics and words in a simple and yet effective manner. When nurses are not highly trained or have many work details to attend to, these job aids can serve as a content reminder for the nurses and can be used for educating their patients (Jennings, Yebadokpo, Affo, & Agbogbe, 2010) ( text omitted ). Importantly, additional evidence is needed to confirm how job aids can further improve the quality of ANC counseling by health workers in maternal care …( text omitted )” 28
  • “ This has led us to hypothesize that the quality of ANC counseling would be better if supported by job aids. Consequently, a better quality of ANC counseling is expected to produce higher levels of awareness concerning the danger signs of pregnancy and a more favorable impression of the caring behavior of nurses .” 28
  • “This study aimed to examine the differences in the responses of pregnant women to a job aid-supported intervention during ANC visit in terms of 1) their understanding of the danger signs of pregnancy and 2) their impression of the caring behaviors of nurses to pregnant women in rural Tanzania.” 28
  • EXAMPLE 2. Background, hypotheses, and aims are provided
  • “We conducted a two-arm randomized controlled trial (RCT) to evaluate and compare changes in salivary cortisol and oxytocin levels of first-time pregnant women between experimental and control groups. The women in the experimental group touched and held an infant for 30 min (experimental intervention protocol), whereas those in the control group watched a DVD movie of an infant (control intervention protocol). The primary outcome was salivary cortisol level and the secondary outcome was salivary oxytocin level.” 29
  • “ We hypothesize that at 30 min after touching and holding an infant, the salivary cortisol level will significantly decrease and the salivary oxytocin level will increase in the experimental group compared with the control group .” 29
  • EXAMPLE 3. Background, aim, and hypothesis are provided
  • “In countries where the maternal mortality ratio remains high, antenatal education to increase Birth Preparedness and Complication Readiness (BPCR) is considered one of the top priorities [1]. BPCR includes birth plans during the antenatal period, such as the birthplace, birth attendant, transportation, health facility for complications, expenses, and birth materials, as well as family coordination to achieve such birth plans. In Tanzania, although increasing, only about half of all pregnant women attend an antenatal clinic more than four times [4]. Moreover, the information provided during antenatal care (ANC) is insufficient. In the resource-poor settings, antenatal group education is a potential approach because of the limited time for individual counseling at antenatal clinics.” 30
  • “This study aimed to evaluate an antenatal group education program among pregnant women and their families with respect to birth-preparedness and maternal and infant outcomes in rural villages of Tanzania.” 30
  • “ The study hypothesis was if Tanzanian pregnant women and their families received a family-oriented antenatal group education, they would (1) have a higher level of BPCR, (2) attend antenatal clinic four or more times, (3) give birth in a health facility, (4) have less complications of women at birth, and (5) have less complications and deaths of infants than those who did not receive the education .” 30

Research questions and hypotheses are crucial components to any type of research, whether quantitative or qualitative. These questions should be developed at the very beginning of the study. Excellent research questions lead to superior hypotheses, which, like a compass, set the direction of research, and can often determine the successful conduct of the study. Many research studies have floundered because the development of research questions and subsequent hypotheses was not given the thought and meticulous attention needed. The development of research questions and hypotheses is an iterative process based on extensive knowledge of the literature and insightful grasp of the knowledge gap. Focused, concise, and specific research questions provide a strong foundation for constructing hypotheses which serve as formal predictions about the research outcomes. Research questions and hypotheses are crucial elements of research that should not be overlooked. They should be carefully thought of and constructed when planning research. This avoids unethical studies and poor outcomes by defining well-founded objectives that determine the design, course, and outcome of the study.

Disclosure: The authors have no potential conflicts of interest to disclose.

Author Contributions:

  • Conceptualization: Barroga E, Matanguihan GJ.
  • Methodology: Barroga E, Matanguihan GJ.
  • Writing - original draft: Barroga E, Matanguihan GJ.
  • Writing - review & editing: Barroga E, Matanguihan GJ.

StatAnalytica

150+ Quantitative Research Topics For HumSS Students In 2023

Quantitative Research Topics For HumSS Students

Are you a student in HumSS (Humanities and Social Sciences) wondering what that means? HumSS is about understanding how people behave, how societies work, and what makes cultures unique. But why should you care about finding the right research topic in HumSS? Well, it’s important because it helps us figure out and deal with the complex issues in our world today.

In this blog, we are going to talk about HumSS research topics, specifically Quantitative Research Topics For HumSS Students in 2023. We’ll help you choose a topic that you find interesting and that fits your academic goals. Whether you study sociology, psychology, or another HumSS subject, we’ve got you covered.

So, stick with us to explore 150+ Quantitative Research Topics For HumSS Students. Let’s start this learning journey together!

What is HumSS?

Table of Contents

HumSS stands for “Humanities and Social Sciences.” It is a way to group together different subjects that focus on people, society, and the world we live in. In HumSS, we study things like history, language, culture, and how people interact with each other and their environment.

In HumSS, you learn about the past and present of human societies, their beliefs, and how they shape the world. It helps us understand our own actions and the world around us better, making us more informed and responsible members of society. So, HumSS is all about exploring the fascinating aspects of being human and the world we share with others.

Why Are Humss Research Topics Important?

HumSS research topics are important because they help us understand people and society better. When we study these topics, like history or how people think and behave, we can learn from the past and make better choices in the present. It helps us solve problems, like how to create a fairer society or how to preserve our culture. HumSS research topics are like a guide that helps us make the world a better place by learning about ourselves and others.

  • Understanding Society: They allow us to comprehend human societies’ complexities, values, and norms.
  • Problem Solving: HumSS research helps us tackle societal issues like poverty, inequality, and discrimination.
  • Cultural Preservation: It aids in preserving and celebrating diverse cultures, languages, and traditions.
  • Historical Lessons: Research in HumSS enables us to learn from history, avoid past mistakes and make informed decisions.
  • Personal Growth: These topics contribute to personal development by fostering critical thinking and empathy, making us more responsible global citizens.

How To Choose A Humss Research Topic

Here are some points that must be kept in mind before choosing the research topic for HumSS:

1. Pick What You Like

Choose a research topic that you find interesting. When you enjoy it, you’ll be more motivated to study and learn about it.

2. Think About Real Problems

Select a topic that relates to problems in the world, like fairness or the environment. Your research can help find solutions to these issues.

3. Check for Books and Information

Make sure there are enough books and information available for your topic. You need resources to help with your research.

4. Make Sure It’s Doable

Consider if you have enough time and skills to study your topic well. Don’t pick something too hard or complicated.

5. Ask for Help

See if you can get help from teachers or experts. They can guide you and make your research better.

Here are some points on 150+ Quantitative Research Topics For HumSS Students In 2023: 

HUMSS Research Topics in Philosophy and Religion

The HumSS strand, which encompasses Philosophy and Religion, allows students to delve into the complexities of belief systems, ethics, and the nature of existence. Below are research topics in this field:

  • Examining the ethical aspects of artificial intelligence and robotics.
  • Analyzing the role of religion in shaping social and cultural norms in the Philippines.
  • Investigating the philosophy of environmental ethics and its relevance in sustainable development.
  • Exploring the concept of free will in the context of determinism.
  • Analyzing the ethical considerations of genetic engineering and cloning in the Philippines.
  • Evaluating the intersection of philosophy and mental health in the Filipino context.
  • Investigating the philosophical foundations of human rights and their application in the country.
  • Exploring the ethical dilemmas of capital punishment in the Philippines.
  • Examining the philosophy of education and its impact on pedagogical approaches.
  •  Analyzing the role of religious pluralism and tolerance in Philippine society.

HUMSS Research Topics in Literature and Language

Studying Literature and Language within the HumSS strand provides students with a deeper understanding of human expression, communication, and culture. Here are research topics in this field:

  •  Analyzing the themes of identity and belonging in contemporary Filipino literature.
  •  Examining the impact of colonialism on the evolution of Philippine literature and language.
  •  Investigating the use of language in social media and its effects on communication.
  •  Exploring the role of folklore and oral traditions in Filipino literature.
  •  The ethical consequences of artificial intelligence and automation are being investigated.
  •  Evaluating the influence of English as a global language on Philippine languages.
  •  Investigating the use of code-switching and its sociolinguistic implications in the Philippines.
  •  Examining how mental health issues are portrayed in Filipino literature and media.
  •  Exploring the role of translation in bridging cultural and linguistic gaps.
  •  Analyzing the impact of language policies on minority languages in the country.

Quantitative Research Topics For HumSS Students In The Philippines

Quantitative Research Topics For HumSS Students involve using numerical data and statistical methods to analyze and draw conclusions about social phenomena in the Philippines.

  •  Analyzing the relationship between income levels and access to quality education.
  •  Examining the impact of inflation on consumer purchasing power in the Philippines.
  •  Investigating factors contributing to youth unemployment rates.
  •  Investigating the connection between economic expansion and environmental damage.
  •  Assessing the effectiveness of government welfare programs in poverty reduction.
  •  Exploring financial literacy levels among Filipinos.
  •  Analyzing the economic consequences of the COVID-19 pandemic.
  •  The role of FDI in the Philippine economy is being investigated.
  •  Studying economic challenges faced by small and medium-sized enterprises (SMEs).
  •  Analyzing the economic implications of infrastructure development programs.

Social Justice And Equity Research Topics For HumSS Students

Social justice and equity research topics in the HumSS field revolve around issues of fairness, justice, and equality in society.

  •  Examining the impact of gender-based violence on access to justice.
  •  Analyzing the role of social media in advocating for social justice causes.
  •  Investigating the effects of government’s “war on drugs” on human rights.
  •  Exploring the intersection of poverty, gender, and healthcare access.
  •  Assessing the experiences of indigenous communities in pursuing justice and land rights.
  •  Analyzing the effectiveness of inclusive education in promoting equity.
  •  Investigating challenges faced by LGBTQ+ individuals in accessing legal rights.
  •  Examining responses to juvenile offenders in the criminal justice system.
  •  Analyzing discrimination’s impact on employment opportunities for people with disabilities.
  •  Evaluating the effectiveness of affirmative action policies.

Cultural Studies Research Topics For HumSS Students

Cultural studies research topics in HumSS examine culture, identity, and society.

  •  Analyzing the influence of K-pop culture on Filipino youth.
  •  Exploring the preservation of indigenous cultures in modern Filipino society.
  •  Studying the impact of Filipino cinema on cultural identity.
  •  Investigating the influence of social media on cultural globalization.
  •  Analyzing the cultural significance of Filipino cuisine.
  •  Investigating how gender and sexuality are portrayed in Filipino media.
  •  Studying the influence of colonial history on contemporary Filipino culture.
  •  Investigating the significance of traditional festivals and rituals.
  •  Analyzing the portrayal of mental health in Filipino literature and art.
  •  Exploring the cultural implications of migration and diaspora.
  • Epidemiology Research Topics
  • Neuroscience Research Topics

Environmental Ethics Research Topics For HumSS Students

Environmental ethics research topics in HumSS delve into the moral and ethical considerations of environmental and sustainability.

  •  Analyzing the ethics of mining practices in the Philippines.
  •  Investigating the moral responsibilities of corporations in environmental conservation.
  •  Examining the ethical implications of plastic pollution in Philippine waters.
  •  Exploring the ethics of ecotourism and its impact on ecosystems.
  •  Assessing the ethical aspects of climate change adaptation and mitigation.
  •  Investigating the moral responsibility of individuals in sustainable living.
  •  Analyzing the ethics of wildlife conservation and protection.
  •  Exploring cultural and ethical dimensions of sustainable fishing practices.
  •  Examining the ethical dilemmas of land-use conflicts and deforestation.
  •  Assessing the ethics of water resource management.

Global Politics And International Relations Research Topics For HumSS Students

Global politics and international relations research topics in HumSS focus on issues related to international diplomacy, governance, and global affairs.

  •  Analyzing the Philippines’ role in the South China Sea dispute.
  •  Investigating the impact of globalization on Philippine sovereignty.
  •  Examining the country’s involvement in regional organizations like ASEAN.
  •  Exploring the Philippines’ response to global humanitarian crises.
  •  Assessing the ethics of international aid and development projects.
  •  Analyzing the country’s foreign policy and alliances.
  •  Investigating the challenges of diplomacy in the digital age.
  •  Exploring the role of non-governmental organizations in shaping policy.
  •  Analyzing the influence of international organizations like the United Nations.
  •  Investigating the Philippines’ stance on global issues such as climate change.

Psychology And Mental Health Research Topics For HumSS Students

Psychology and mental health research topics in HumSS involve the study of human behavior, mental health, and well-being.

  •  Analyzing the impact of social media on the mental health of Filipino adolescents.
  •  Investigating the stigma surrounding mental health in the Philippines.
  •  Examining the effects of government policies on mental health support.
  •  Exploring the psychological effects of disasters and trauma.
  •  Assessing the relationship between personality traits and academic performance.
  •  Investigating cultural factors affecting help-seeking behavior.
  •  Analyzing the mental health challenges faced by healthcare workers during the pandemic.
  •  Exploring the experiences of Filipino overseas workers and their mental well-being.
  •  Studying the impact of online gaming addiction on Filipino youth.
  •  Evaluating the success of school-based mental health programs.

Education And Pedagogy Research Topics For HumSS Students

Education and pedagogy research topics in HumSS encompass the study of teaching, learning, and educational systems.

  •  Assessing the effectiveness of online learning during the COVID-19 pandemic.
  •  Investigating the role of technology in enhancing classroom engagement.
  •  Examining inclusive education practices for students with disabilities.
  •  Analyzing the effects of teacher training on student outcomes.
  •  Exploring alternative education models like homeschooling.
  •  Studying parental involvement’s impact on student achievement.
  •  Investigating sex education programs’ effectiveness in schools.
  •  Exploring the role of arts education in fostering creativity.
  •  Analyzing the challenges of implementing K-12 education reform.
  •  Assessing standardized testing’s benefits and drawbacks in education.

History And Historical Perspectives Research Topics For HumSS Students

History and historical perspectives research topics in HumSS delve into the study of past events and their significance.

  •  Reinterpreting indigenous peoples’ roles in Philippine history.
  •  Analyzing the impact of Spanish colonization on Filipino culture.
  •  Investigating the historical roots of political dynasties.
  •  Examining the contributions of Filipino women in the fight for independence.
  •  Exploring the role of propaganda and media in key historical events.
  •  Assessing the legacy of martial law under Ferdinand Marcos.
  •  Investigating indigenous resistance and revolts in history.
  •  Studying the evolution of Philippine democracy and political institutions.
  •  Analyzing the role of Filipino migrants in global history.
  • Exploring cultural and historical significance through ancient artifacts.

Economics And Economic Policy Research Topics For HumSS Students

Economics and economic policy research topics in HumSS focus on economic systems, policies, and their impact on society.

  • Analyzing the economic impact of natural disasters.
  • Investigating microfinance’s role in poverty alleviation.
  • Examining the informal economy and labor rights.
  • Exploring the effects of trade policies on local industries.
  • Assessing the relationship between education and income inequality.
  • Analyzing the economic consequences of informal settler issues.
  • Investigating agricultural modernization challenges.
  • Exploring the role of foreign aid in development.
  • Analyzing the economic effects of healthcare disparities.
  • Investigating renewable energy adoption’s economic benefits.

Philosophy And Ethics Research Topics For HumSS Students

Philosophy and ethics research topics in HumSS involve exploring questions of morality, ethics, and philosophy.

  • Examining the ethics of truth-telling in medical practice.
  • Analyzing the philosophical foundations of human rights.
  • Investigating ethics in artificial intelligence and automation.
  • Exploring ethical dilemmas of genetic engineering and cloning.
  • Assessing moral considerations in end-of-life care decisions.
  • Investigating ethics in environmental conservation and sustainability.
  • Analyzing the ethics of capital punishment.
  • Exploring the moral responsibility of corporations in social issues.
  • Assessing the ethics of data privacy and surveillance.
  • Investigating ethical considerations in public health.

Healthcare And Public Health Research Topics For HumSS Students

Healthcare and public health research topics in HumSS involve studying health-related issues, healthcare systems, and public health policies.

  • Analyzing the effectiveness of the Philippine healthcare system in addressing public health crises.
  • Investigating healthcare disparities and their impact on marginalized communities.
  • Examining factors contributing to vaccine hesitancy in the country.
  • Exploring the role of traditional medicine and alternative healthcare practices in Filipino culture.
  • Analyzing the mental health challenges faced by healthcare workers during the COVID-19 pandemic.
  • Assessing the accessibility and affordability of healthcare services in rural areas.
  • Investigating the ethical considerations of organ transplantation and donation.
  • Examining the effectiveness of health education programs in preventing diseases.
  • Analyzing public perceptions of the pharmaceutical industry and drug pricing.
  • Investigating the social determinants of health and their impact on population health outcomes.

Exploring HumSS Research Topics in Gender Studies

Gender studies research topics in HumSS focus on issues related to gender identity, roles, and equality in society.

  • Analyzing the representation of gender in Philippine media and popular culture.
  • Investigating the experiences of transgender individuals in the Philippines.
  • Examining the impact of religion on gender norms in Filipino society.
  • Exploring the role of gender-based violence prevention programs.
  • Assessing the impact of gender stereotypes on career choices and opportunities.
  • Analyzing the portrayal of women in political leadership roles.
  • Investigating the role of masculinity and its effects on men’s mental health.
  • Exploring the experiences of LGBTQ+ youth in Philippine schools.
  • Studying the intersectionality of gender, class, and race in the Philippines.
  • Evaluating the effectiveness of gender mainstreaming policies in government agencies.

HumSS Research Topics in Global Governance

Research topics in global governance within HumSS focus on international diplomacy, governance structures, and global challenges.

  • Analyzing the role of the Philippines in regional security alliances like the ASEAN Regional Forum.
  • Investigating the country’s involvement in international peacekeeping missions.
  • Examining the country’s stance on global human rights issues.
  • Evaluating the effectiveness of international organizations in addressing global challenges.
  • Exploring the Philippines’ participation in global climate change negotiations.
  • Analyzing the country’s compliance with international treaties and agreements.
  • Investigating the role of Filipino diaspora communities in global governance issues.
  • Assessing the impact of globalization on Philippine sovereignty and governance.
  • Analyzing the country’s foreign policy responses to global health crises.
  • Exploring ethical dilemmas in international humanitarian intervention.
  • Investigating the diplomatic and economic implications of the Philippines’ bilateral relations with neighboring countries in Southeast Asia.

After exploring 150+ Quantitative Research Topics For HumSS Students, now we will discuss tips for writing a HumSS research paper

Tips for Writing a HumSS Research Paper

Here are some tips for writing a HumSS Research Paper: 

#Tip 1: Choose a Clear Topic

Start your HumSS research paper by picking a topic that’s not too big. Instead of something huge like “History,” go for a smaller idea like “The Life of Ancient Egyptians.” This helps you focus and find the right information.

#Tip 2: Plan Your Paper

Before you write, make a plan. Think about what you’ll say in the beginning, middle, and end of your paper. It’s like making a roadmap for your writing journey. Planning helps you stay on track.

#Tip 3: Use Good Sources

Use trustworthy sources for your paper, like books, experts’ articles, or reliable websites. Avoid sources that might not have the right information. Trustworthy sources make your paper stronger.

#Tip 4: Say Thanks to Your Sources

When you use information from other places, it’s important to give credit. This is called citing your sources. Follow the rules for citing, like APA , MLA, or Chicago, so you don’t copy someone else’s work and show where you found your facts.

#Tip 5: Make Your Paper Better

After you finish writing, go back and fix any mistakes. Check for spelling or grammar error and make your sentences smoother. A well-edited paper is easier for others to read and makes your ideas shine.

Understanding HumSS (Humanities and Social Sciences) is the first step in your journey to exploring the world of quantitative research topics for HumSS students. These topics are crucial because they help us unravel the complexities of human behavior, society, and culture. 

In addition, we have discussed selecting the right HumSS research topic that aligns with your interests and academic goals. With 150+ quantitative research ideas for HumSS students in 2023, you have a wide array of options to choose from. Plus, we’ve shared valuable tips for writing a successful HumSS research paper. So, dive into the world of HumSS research and uncover the insights that await you!

Related Posts

best way to finance car

Step by Step Guide on The Best Way to Finance Car

how to get fund for business

The Best Way on How to Get Fund For Business to Grow it Efficiently

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • 10 Research Question Examples to Guide Your Research Project

10 Research Question Examples to Guide your Research Project

Published on October 30, 2022 by Shona McCombes . Revised on October 19, 2023.

The research question is one of the most important parts of your research paper , thesis or dissertation . It’s important to spend some time assessing and refining your question before you get started.

The exact form of your question will depend on a few things, such as the length of your project, the type of research you’re conducting, the topic , and the research problem . However, all research questions should be focused, specific, and relevant to a timely social or scholarly issue.

Once you’ve read our guide on how to write a research question , you can use these examples to craft your own.

Research question Explanation
The first question is not enough. The second question is more , using .
Starting with “why” often means that your question is not enough: there are too many possible answers. By targeting just one aspect of the problem, the second question offers a clear path for research.
The first question is too broad and subjective: there’s no clear criteria for what counts as “better.” The second question is much more . It uses clearly defined terms and narrows its focus to a specific population.
It is generally not for academic research to answer broad normative questions. The second question is more specific, aiming to gain an understanding of possible solutions in order to make informed recommendations.
The first question is too simple: it can be answered with a simple yes or no. The second question is , requiring in-depth investigation and the development of an original argument.
The first question is too broad and not very . The second question identifies an underexplored aspect of the topic that requires investigation of various  to answer.
The first question is not enough: it tries to address two different (the quality of sexual health services and LGBT support services). Even though the two issues are related, it’s not clear how the research will bring them together. The second integrates the two problems into one focused, specific question.
The first question is too simple, asking for a straightforward fact that can be easily found online. The second is a more question that requires and detailed discussion to answer.
? dealt with the theme of racism through casting, staging, and allusion to contemporary events? The first question is not  — it would be very difficult to contribute anything new. The second question takes a specific angle to make an original argument, and has more relevance to current social concerns and debates.
The first question asks for a ready-made solution, and is not . The second question is a clearer comparative question, but note that it may not be practically . For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

Note that the design of your research question can depend on what method you are pursuing. Here are a few options for qualitative, quantitative, and statistical research questions.

Type of research Example question
Qualitative research question
Quantitative research question
Statistical research question

Other interesting articles

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. (2023, October 19). 10 Research Question Examples to Guide your Research Project. Scribbr. Retrieved September 3, 2024, from https://www.scribbr.com/research-process/research-question-examples/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, writing strong research questions | criteria & examples, how to choose a dissertation topic | 8 steps to follow, evaluating sources | methods & examples, "i thought ai proofreading was useless but..".

I've been using Scribbr for years now and I know it's a service that won't disappoint. It does a good job spotting mistakes”

quantitative research topics related to science

Quantitative Research Topics Related to Humss Strand

Mohini Saxena

Mohini Saxena

Embarking on the journey of quantitative research within the Humanities and Social Sciences (HumSS) strand opens a gateway to understanding our complex world through the simplicity of numbers. In this exploration, we delve into 80 quantitative research topics tailored for HumSS students, where the seemingly mundane becomes a treasure trove of insights. From the impact of social media on academic performance to the correlation between family structures and success, these topics are bridges connecting curiosity with evidence. As we unravel the tapestry of data, we invite HumSS enthusiasts to embrace the power of numbers in unraveling the intricacies of human behavior, societal dynamics, and the multifaceted world of the humanities.

Also read: Quantitative Research Topics for STEM Students

What is Quantitative Research?

Quantitative research is like using numbers to decode the mysteries of life. It’s a methodical way of gathering and analyzing data to understand patterns, trends, and relationships. Imagine you’re curious about something — let’s say, how many hours people spend on social media. Instead of just guessing, quantitative research steps in. You’d collect actual numbers through surveys or experiments and then crunch those numbers to find out the real deal. It’s a bit like being a detective, but instead of clues, you’re dealing with data. So, whether it’s figuring out the impact of family structures on academic success or exploring the connection between sleep and grades, quantitative research is the tool that turns questions into answers using the language of numbers.

Top 20 Quantitative Research Topics Related to Humss Strand

  • Social Media Impact on Teenagers: How does spending too much time on social media affect the grades of high school students?
  • Family Structure and Academic Performance: Is there a connection between a student’s family structure and their academic success?
  • Reading Habits and Cognitive Skills: Do students who read regularly have better cognitive skills than those who don’t?
  • Effects of Music on Studying: Can listening to music improve or hinder concentration while studying?
  • The Influence of Teachers on Career Choices: How does the guidance of teachers impact the career choices of students?
  • Usage of Technology in Education: What is the correlation between using technology in classrooms and student engagement?
  • Impact of School Uniforms: Do school uniforms contribute to a better learning environment?
  • Parental Involvement in Homework: How does parental involvement in homework affect a student’s academic performance?
  • Extracurricular Activities and Time Management: Do students engaged in extracurricular activities manage their time better?
  • Bullying and Academic Achievement: Is there a link between bullying and a student’s academic success?
  • Sleep Patterns and Academic Performance: How does the amount of sleep students get affect their grades?
  • Gender and Subject Preferences: Are there gender differences in subject preferences among HumSS students?
  • Impact of Field Trips on Learning: Do educational field trips enhance students’ understanding of subjects?
  • Peer Pressure and Decision-Making: How does peer pressure influence the decision-making process of teenagers?
  • Use of Social Media for Educational Purposes: Can social media be effectively used as an educational tool?
  • Role of Ethics in Journalism: How do ethical considerations impact the credibility of journalism?
  • Economic Status and Academic Success: Is there a connection between a student’s economic status and their academic achievements?
  • Media Influence on Body Image: How does media portrayal affect the body image of adolescents?
  • Cultural Diversity in Education: What is the impact of cultural diversity in the classroom on students’ perspectives?
  • The Relationship Between Motivation and Academic Performance: Do motivated students perform better academically?

In the colorful realm of HumSS quantitative research, we’ve uncovered a spectrum of topics, each holding the promise of unlocking valuable insights. These numerical investigations offer HumSS students a passport to a world where questions meet evidence, and curiosity meets clarity. As we conclude this journey, remember that quantitative research isn’t just about crunching numbers; it’s about unraveling stories, exposing connections, and shedding light on the intricacies of human experiences. So, armed with curiosity and a statistical toolkit, HumSS enthusiasts can venture forth, transforming the seemingly ordinary into extraordinary revelations that contribute to the ever-evolving narrative of our shared human story. Happy researching!

Mohini Saxena

Written by Mohini Saxena

I am Mohini Saxena, a lifelong learner specializing in giving CS-related information to enhance everyone's knowledge. codeavail.com

Text to speech

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS. A lock ( Lock Locked padlock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

A collage of about the work of the new NSF Engineering Research Centers in biotechnology, manufacturing, robotics and sustainability.

NSF announces 4 new Engineering Research Centers focused on biotechnology, manufacturing, robotics and sustainability

Engineering innovations transform our lives and energize the economy.  The U.S. National Science Foundation announces a five-year investment of $104 million, with a potential 10-year investment of up to $208 million, in four new NSF Engineering Research Centers (ERCs) to create technology-powered solutions that benefit the nation for decades to come.   

"NSF's Engineering Research Centers ask big questions in order to catalyze solutions with far-reaching impacts," said NSF Director Sethuraman Panchanathan. "NSF Engineering Research Centers are powerhouses of discovery and innovation, bringing America's great engineering minds to bear on our toughest challenges. By collaborating with industry and training the workforce of the future, ERCs create an innovation ecosystem that can accelerate engineering innovations, producing tremendous economic and societal benefits for the nation."  

The new centers will develop technologies to tackle the carbon challenge, expand physical capabilities, make heating and cooling more sustainable and enable the U.S. supply and manufacturing of natural rubber.  

The 2024 ERCs are:  

  • NSF ERC for Carbon Utilization Redesign through Biomanufacturing-Empowered Decarbonization (CURB) — Washington University in St. Louis in partnership with the University of Delaware, Prairie View A&M University and Texas A&M University.   CURB will create manufacturing systems that convert CO2 to a broad range of products much more efficiently than current state-of-the-art engineered and natural systems.    
  • NSF ERC for Environmentally Applied Refrigerant Technology Hub (EARTH) — University of Kansas in partnership with Lehigh University, University of Hawaii, University of Maryland, University of Notre Dame and University of South Dakota.   EARTH will create a transformative, sustainable refrigerant lifecycle to reduce global warming from refrigerants while increasing the energy efficiency of heating, ventilation and cooling.    
  • NSF ERC for Human AugmentatioN via Dexterity (HAND) — Northwestern University in partnership with Carnegie Mellon University, Florida A&M University, and Texas A&M University, and with engagement of MIT.  HAND will revolutionize the ability of robots to augment human labor by transforming dexterous robot hands into versatile, easy-to-integrate tools.     
  • NSF ERC for Transformation of American Rubber through Domestic Innovation for Supply Security (TARDISS) — The Ohio State University in partnership with Caltech, North Carolina State University, Texas Tech University and the University of California, Merced.   TARDISS will create bridges between engineering, biology, and agriculture to revolutionize and on-shore alternative natural rubber production from U.S. crops.  

Since its founding in 1985, NSF's ERC program has funded 83 centers (including the four announced today) that receive support for up to 10 years. The centers build partnerships with educational institutions, government agencies and industry stakeholders to support innovation and inclusion in established and emerging engineering research.  

Visit NSF's website and read about NSF Engineering Research Centers .  

Research areas

  • Alzheimer's disease & dementia
  • Arthritis & Rheumatism
  • Attention deficit disorders
  • Autism spectrum disorders
  • Biomedical technology
  • Diseases, Conditions, Syndromes
  • Endocrinology & Metabolism
  • Gastroenterology
  • Gerontology & Geriatrics
  • Health informatics
  • Inflammatory disorders
  • Medical economics
  • Medical research
  • Medications
  • Neuroscience
  • Obstetrics & gynaecology
  • Oncology & Cancer
  • Ophthalmology
  • Overweight & Obesity
  • Parkinson's & Movement disorders
  • Psychology & Psychiatry
  • Radiology & Imaging
  • Sleep disorders
  • Sports medicine & Kinesiology
  • Vaccination
  • Breast cancer
  • Cardiovascular disease
  • Chronic obstructive pulmonary disease
  • Colon cancer
  • Coronary artery disease
  • Heart attack
  • Heart disease
  • High blood pressure
  • Kidney disease
  • Lung cancer
  • Multiple sclerosis
  • Myocardial infarction
  • Ovarian cancer
  • Post traumatic stress disorder
  • Rheumatoid arthritis
  • Schizophrenia
  • Skin cancer
  • Type 2 diabetes
  • Full List »

share this!

September 3, 2024

This article has been reviewed according to Science X's editorial process and policies . Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

Q&A with neurologists: Can your phone and AI track Parkinson's progression?

by Melinda Krigel, University of California, San Francisco

Parkinson's disease

Researchers say we're on the cusp of a new era where physicians will personalize care, adjusting medications and pacemakers based on videos captured at home by patients that can be analyzed by artificial intelligence.

Despite recent advancements in the treatment of Parkinson's disease, it remains a challenge to accurately measure the progression of symptoms in this neurological disorder . While noticeable symptoms like tremors, stiffness and slowing of movement can be observed, there have been few ways to quantify changes in symptoms outside of a clinical setting—up until now.

Researchers at UC San Francisco have developed a video-based analysis system enabled by machine learning, a type of artificial intelligence (AI), to quantify and validate motor symptom severity in patients with Parkinson's disease (PD).

Co-senior study authors Simon Little, MBBS, Ph.D., associate professor of neurology and Reza Abbasi-Asl, Ph.D., assistant professor of neurology discuss the breakthrough and what role AI plays. The research is published in the journal npj Parkinson's Disease .

Why design this system for PD?

Little: Parkinson's disease is the most common and severe movement disorder. It is also the fastest growing neurological disorder and is rapidly becoming more prevalent in the U.S. and around the world. We wanted to design a system using machine learning that would enable us to quantify movements objectively and allow us to tailor treatments to patients individually according to their objectively quantified movements.

Why is it important to quantify PD motor symptoms?

Little: To adjust treatment appropriately. This includes medications and brain stimulation, tracking patients over time and having sensitive measures for clinical trials.

What is the standard approach to measuring PD motor symptoms?

Little: The standard approach to measuring PD motor symptoms is a subjective qualitative clinical examination by an expert neurologist where a patient repeats movements like finger tapping, foot tapping and hand movements. Historically, clinicians have looked at those types of movements and subjectively scored them with a score: slight, mild, moderate or severe.

There have been quite a number of different efforts to measure things more objectively, using things like wearable sensors on the body, or using other machine learning techniques. So far, those have generally remained at the research level and are only just starting to make their way into useful clinical practice.

What differentiates your system from these clinical approaches?

Little: Our system is quick, objective, quantitative and looks at multiple types of movement, not just the movements covered in the standard clinical examination. It also works on standard video equipment, such as from a smartphone or tablet. This system gives an objective number score to how much the disease is impacting the patient's movements, including changes to the speed or quality of the movements. The system can also look at a bigger library of movements.

Abbasi-Asl: Another key component of our system is its ability to provide explanations on how it can predict PD severity. This enables us to identify the most common movement patterns in different disease severity groups.

Can you explain how smartphone or tablet videos are translated into measurable data with AI?

Abbasi-Asl: The beauty of our approach is that our AI-enabled system transforms short videos of patients during different movement tasks into digitized and computer-friendly movement data. Our system identifies the different landmarks or body parts on these videos and then uses the movement of those body parts to differentiate between different disease severity groups.

What movements can be translated with your system?

Abbasi-Asl: The AI system is trained to analyze any type of movement in the video data. In our study, we specifically focused on videos of patients walking and moving their hands, but our future work will include other movement types, such as facial expressions and speech.

How does the system capture the severity of PD symptoms?

Abbasi-Asl: Once the AI system captures the movement in video data, our machine learning analysis identifies the most important movement features, such as the speed of finger movement that is associated with a particular severity level. It basically determines whether patients with low or high severity share a particular movement pattern.

Will the system improve assessment of changes in PD motor symptoms over time?

Little: We hope that this technology could accurately measure changes in Parkinson's symptoms over time, which can help with treatment adjustments and measuring patients in clinical trials more accurately.

Abbasi-Asl: The findings from the clinical perspective also highlight some new features of movement that maybe haven't been the primary focus in the past. We can now come up with recommendations highlighting potential new movement patterns in patients that could be predictive of the severity of the disease.

By improving motor symptom diagnosis, can you more effectively personalize treatment?

Little: At the moment, when we see patients in clinic, we assess them and compare where they are today with what they were like three or six months ago. The patient also tells us how they are feeling. They may report fluctuations in symptoms, but it's difficult to know how severe those fluctuations are.

Based on that limited information, we try to assess the next best steps for patients. Should we increase the medication? Should we change a brain pacemaker setting?

So, if we can accurately quantify the patient's symptoms to know how they are doing relative to their last visit, we can know if a treatment intervention made symptoms better or worse.

By having an accurate measure of patient symptoms that is quantitative and reliable, a clinician has a lot more to work with, and they can make sure the patient is getting the best therapy, at the best time and at the right dose, to try to offset their symptoms as much as possible.

Would the information you're getting about patients increase since it would be on a continuous basis rather than just when they are in for a clinic visit?

Little: Absolutely. I think we've kind of been conducting some areas of medicine really broadly in the same way for the last 100 years. We see patients and talk to them. We do an examination in clinic and then we try and make an adjustment of some of their treatments.

But if we can track their fluctuations and their movements at home, we could have a very different style of medical practice where patients are being monitored nearly continuously. That already happens for some conditions—for example, a patient with a cardiac pacemaker is being monitored for what their heart is doing continuously rather than just every six months when they see the clinician. So, I think that's where we could and probably will get to with these kinds of digital tools.

Can the system be applied to other neurological disorders?

Little: Yes. In theory, this could be used to quantify and measure any type of movement deficit—it doesn't have to be restricted to Parkinson's disease. Many other neurological disorders have problems with movement. Our system provides a generalizable way of analyzing movements efficiently.

Our trial analyzed the movements of patients with Parkinson's disease, but it could be used for neurological disorders like strokes, multiple sclerosis and traumatic brain injuries. However, this would need to be validated in these other conditions before we can be certain how accurate it would be.

Do you have any future studies/applications planned?

Abbasi-Asl: The next step for us is to study whether our framework could handle data that is collected at home when patients are just doing their daily activity, or perhaps when using their smartphone or tablet.

This will be a move toward more naturalistic data collection. In this setting, we can look into more complex movement types from a much larger amount of data because patients can essentially do this more frequently without the need to come to the clinic for a visit.

When will the video capture system be put into clinical use?

Little: I'm hopeful that within five years this type of approach will be more common in clinical practice. I think we are at this transformational point, moving from old-fashioned, subjective views of patients to digital transformation. Having more data will enable our models to have even better accuracy.

Currently, this system has been tested and validated in the research laboratory, but the hope is that it can be taken forward through regulatory evaluation to be used clinically and be more widespread.

Explore further

Feedback to editors

quantitative research topics related to science

Rising temperatures in Africa may increase perinatal deaths

8 minutes ago

quantitative research topics related to science

Dangerous airborne fungus boosted by California droughts

25 minutes ago

quantitative research topics related to science

Hydrogel developed for use in slowing or stopping early stages of osteoarthritis

29 minutes ago

quantitative research topics related to science

Study of former world's strongest man shows 'guy rope' muscles important for lifting

30 minutes ago

quantitative research topics related to science

Gene found in ovarian cancer cells identified as potential new target for treatment

quantitative research topics related to science

False-positive mammograms discourage some women from future screenings

17 hours ago

quantitative research topics related to science

Study reveals how neighboring synapses coordinate their response to plasticity signals

22 hours ago

quantitative research topics related to science

Two-in-one treatment could hold promise for incurable brain cancer, mouse study shows

quantitative research topics related to science

Alzheimer's-like brain changes found in long COVID patients

quantitative research topics related to science

Rare genetic variants linked to bicuspid aortic valve disease in young adults identified

23 hours ago

Related Stories

quantitative research topics related to science

Improving measurement of Parkinson's disease severity with AI

Jul 9, 2024

quantitative research topics related to science

New video test for Parkinson's uses AI to track how the disease is progressing

Jul 23, 2024

quantitative research topics related to science

What the trained eye cannot see: Detecting movement defects in early stage Parkinson's disease

Aug 15, 2024

quantitative research topics related to science

Wearable sensors for Parkinson's can improve with machine learning, data from healthy adults

Apr 12, 2024

quantitative research topics related to science

Wearable sensors provide early detection of progression in Parkinson's disease

Oct 11, 2023

quantitative research topics related to science

Stirring up emotions: Parkinson's disease alters emotion-related bodily sensations, finds study

Apr 15, 2024

Recommended for you

quantitative research topics related to science

New insights into the pathogenesis of amyotrophic lateral sclerosis

Aug 28, 2024

quantitative research topics related to science

Low-dose carbon monoxide may explain the paradoxical reduced risk of Parkinson's disease among smokers

Aug 23, 2024

quantitative research topics related to science

Scientists uncover new mechanism of 'forgetting' in brain neurons that could inform Parkinson's treatment

quantitative research topics related to science

Two proteins identified as potential targets to improve ALS symptoms

Aug 22, 2024

quantitative research topics related to science

The role of an energy-producing enzyme in treating Parkinson's disease

Aug 21, 2024

quantitative research topics related to science

Aceneuramic acid is the first approved drug for GNE myopathy treatment

Aug 20, 2024

Let us know if there is a problem with our content

Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form . For general feedback, use the public comments section below (please adhere to guidelines ).

Please select the most appropriate category to facilitate processing of your request

Thank you for taking time to provide your feedback to the editors.

Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.

E-mail the story

Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Medical Xpress in any form.

Newsletter sign up

Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.

More information Privacy policy

Donate and enjoy an ad-free experience

We keep our content available to everyone. Consider supporting Science X's mission by getting a premium account.

E-mail newsletter

  • MyU : For Students, Faculty, and Staff

Professor William Pomerantz named Institute on the Environment Fellow

Will Pomerantz headshot

MINNEAPOLIS / ST. PAUL (8/29/2024) – Professor William C. K. Pomerantz has been recently selected as a University of Minnesota Institute on the Environment (IonE) Fellow. IonE Fellows are established researchers and innovative thought leaders who have demonstrated excellence in disciplines related to environmental protection or sustainability, maintain a significant publication record regarding subjects of topical relevance to IonE, and have been recognized by national and international colleagues.

Pomerantz’s fellowship recognizes a new interest area in his research program that has been emerging over the last six years, for addressing a key societal challenge, namely the persistence of poly- and perfluorinated alkyl substances (PFAS). IonE provides access to a collaborative educational environment with researchers interested in problems surrounding sustainability and supports  interactions with external partners to help solve important societal problems, including but not limited to PFAS. Using his laboratory’s expertise in synthetic organofluorine chemistry, and expertise in quantitative 19F nuclear magnetic resonance spectroscopy (NMR), Pomerantz has begun to work with researchers across campus and with the United States Geological Survey (USGS) to help identify persistent fluorinated functional groups in widely-used pharmaceuticals and pesticides, to help quantify total PFAS in the environment, and to start designing PFAS alternatives for biomedical applications.

Through a collaboration with Bill Arnold in the UMN Department of Civil and Environmental Engineering, Pomerantz has served as a co-PI on several collaborative state and federally funded grants to support this research since 2018 from the Legislative-Citizen Commission on Minnesota Resources Environment and Natural Resources Trust Fund, the USGS, and the National Science Foundation. To continue to expand the impact of this important research, Pomerantz has also worked with the College of Science and Engineering leadership over the last year to engage a community of IonE researchers to help identify collaborative opportunities for pooling expertise across multiple disciplines. He says he looks forward to continuing this work as a member of the IonE.

Since joining the UMN faculty in 2012, Pomerantz’s chemistry research has focused on the development of chemical biology and medicinal chemistry approaches for modulating transcription factor function through disruption of protein-protein interactions, with a significant focus in the area of epigenetics. In addition to work in his lab, he is currently the co-director of the NIH T32 Chemistry Biology Interface Training Grant, which works to provide rigorous and interdisciplinary training to a diverse and inclusive community of biomedical scientists and Topic Editor for ACS Medicinal Chemistry Letters, an ACS Transformative Journal. Pomerantz’s impact on the chemistry community has been recognized with many honors, including the Horace T. Morse Award (2024), the George W. Taylor Award for Distinguished Teaching (2022), the NIH Maximizing Investigators Research Award (2021), the McKnight Presidential Fellowship (2018), the Guillermo E. Borja Career Development Award (2018), being named a Cottrell Scholar by the Research Corporation for Science Advancement (2016), and the international Chemical Biology Society’s Rising Star Award (2016).

Pomerantz Group Website

Institute on the Environment Website

Related news releases

  • Professor Sapna Sarupria receives 2024 CoMSEF Impact Award
  • Smith Professor Erin Carlson wins 2024 Cottrell SEED Award
  • Krause, Penn, Tuga, and Umanzor earn Diversity, Equity, and Inclusion Leadership Showcase Awards
  • Distinguished University Teaching Professor Philippe Bühlmann receives President's Award for Outstanding Service
  • Professor Emerita Jane Wissinger awarded 2024 Career Achievement in Green Chemistry Education
  • Future undergraduate students
  • Future transfer students
  • Future graduate students
  • Future international students
  • Diversity and Inclusion Opportunities
  • Learn abroad
  • Living Learning Communities
  • Mentor programs
  • Programs for women
  • Student groups
  • Visit, Apply & Next Steps
  • Information for current students
  • Departments and majors overview
  • Departments
  • Undergraduate majors
  • Graduate programs
  • Integrated Degree Programs
  • Additional degree-granting programs
  • Online learning
  • Academic Advising overview
  • Academic Advising FAQ
  • Academic Advising Blog
  • Appointments and drop-ins
  • Academic support
  • Commencement
  • Four-year plans
  • Honors advising
  • Policies, procedures, and forms
  • Career Services overview
  • Resumes and cover letters
  • Jobs and internships
  • Interviews and job offers
  • CSE Career Fair
  • Major and career exploration
  • Graduate school
  • Collegiate Life overview
  • Scholarships
  • Diversity & Inclusivity Alliance
  • Anderson Student Innovation Labs
  • Information for alumni
  • Get engaged with CSE
  • Upcoming events
  • CSE Alumni Society Board
  • Alumni volunteer interest form
  • Golden Medallion Society Reunion
  • 50-Year Reunion
  • Alumni honors and awards
  • Outstanding Achievement
  • Alumni Service
  • Distinguished Leadership
  • Honorary Doctorate Degrees
  • Nobel Laureates
  • Alumni resources
  • Alumni career resources
  • Alumni news outlets
  • CSE branded clothing
  • International alumni resources
  • Inventing Tomorrow magazine
  • Update your info
  • CSE giving overview
  • Why give to CSE?
  • College priorities
  • Give online now
  • External relations
  • Giving priorities
  • CSE Dean's Club
  • Donor stories
  • Impact of giving
  • Ways to give to CSE
  • Matching gifts
  • CSE directories
  • Invest in your company and the future
  • Recruit our students
  • Connect with researchers
  • K-12 initiatives
  • Diversity initiatives
  • Research news
  • Give to CSE
  • CSE priorities
  • Corporate relations
  • Information for faculty and staff
  • Administrative offices overview
  • Office of the Dean
  • Academic affairs
  • Finance and Operations
  • Communications
  • Human resources
  • Undergraduate programs and student services
  • CSE Committees
  • CSE policies overview
  • Academic policies
  • Faculty hiring and tenure policies
  • Finance policies and information
  • Graduate education policies
  • Human resources policies
  • Research policies
  • Research overview
  • Research centers and facilities
  • Research proposal submission process
  • Research safety
  • Award-winning CSE faculty
  • National academies
  • University awards
  • Honorary professorships
  • Collegiate awards
  • Other CSE honors and awards
  • Staff awards
  • Performance Management Process
  • Work. With Flexibility in CSE
  • K-12 outreach overview
  • Summer camps
  • Outreach events
  • Enrichment programs
  • Field trips and tours
  • CSE K-12 Virtual Classroom Resources
  • Educator development
  • Sponsor an event

IMAGES

  1. Quantitative-Research-Proposal-Topics-list.pdf

    quantitative research topics related to science

  2. 100+ Best Quantitative Research Topics For Students In 2023

    quantitative research topics related to science

  3. 2-Kinds-of-Quantitative-Research-18-19.pptx

    quantitative research topics related to science

  4. Quantitative Research: Definition, Methods, Types and Examples

    quantitative research topics related to science

  5. 51 Best Quantitative Research Topics for your Next Semester

    quantitative research topics related to science

  6. Lesson 2

    quantitative research topics related to science

VIDEO

  1. Difference Between Quantitative and Qualitative Research #quantitativeresearch #qualitativeresearch

  2. Quantitative Research||Characteristics, Types, Advantages and Disadvantages of Quantitative Research

  3. Quantitative Research Topics

  4. Quantitative and Qualitative Research Methods

  5. Importance of Quantitative Research in Different Fields

  6. Top 3 Daily Science Facts

COMMENTS

  1. 200+ Experimental Quantitative Research Topics For Stem Students

    Here are 10 interesting research topics for STEM students: Exploring the science behind the formation of auroras and their cultural significance. Investigating the mysteries of dark matter and dark energy in the universe. Studying the psychology of decision-making in high-pressure situations, such as sports or.

  2. 500+ Quantitative Research Titles and Topics

    Quantitative research involves collecting and analyzing numerical data to identify patterns, trends, and relationships among variables. This method is widely used in social sciences, psychology, economics, and other fields where researchers aim to understand human behavior and phenomena through statistical analysis. If you are looking for a quantitative research topic, there are numerous areas ...

  3. 189+ Good Quantitative Research Topics For STEM Students

    Following are the best Quantitative Research Topics For STEM Students in mathematics and statistics. Prime Number Distribution: Investigate the distribution of prime numbers. Graph Theory Algorithms: Develop algorithms for solving graph theory problems. Statistical Analysis of Financial Markets: Analyze financial data and market trends.

  4. 100+ Best Quantitative Research Topics For Students In 2023

    An example of quantitative research topics for 12 th -grade students will come in handy if you want to score a good grade. Here are some of the best ones: The link between global warming and climate change. What is the greenhouse gas impact on biodiversity and the atmosphere.

  5. Best 151+ Quantitative Research Topics for STEM Students

    Chemistry. Let's get started with some quantitative research topics for stem students in chemistry: 1. Studying the properties of superconductors at different temperatures. 2. Analyzing the efficiency of various catalysts in chemical reactions. 3. Investigating the synthesis of novel polymers with unique properties. 4.

  6. 100+ Environmental Science Research Topics

    F inding and choosing a strong research topic is the critical first step when it comes to crafting a high-quality dissertation, thesis or research project. Here, we'll explore a variety research ideas and topic thought-starters related to various environmental science disciplines, including ecology, oceanography, hydrology, geology, soil science, environmental chemistry, environmental ...

  7. 60+ Best Quantitative Research Topics for STEM Students: Dive into Data

    Embark on a captivating journey through the cosmos of knowledge with our curated guide on Quantitative Research Topics for STEM Students. Explore innovative ideas in science, technology, engineering, and mathematics, designed to ignite curiosity and shape the future. Unleash the power of quantitative research and dive into uncharted territories ...

  8. Best 101 Quantitative Research Topics for STEM Students

    101 Quantitative Research Topics for STEM Students Biology Research Topics. Effect of Temperature on Enzyme Activity: Investigate how different temperatures affect the efficiency of enzymes in biological reactions. The Impact of Pollution on Aquatic Ecosystems: Analyze the correlation between pollution levels and the health of aquatic ecosystems. Genetic Variability in Human Populations: Study ...

  9. 100 Science Topics for Research Papers

    Research Sources. Science: As a premier publication in the field, Science publishes peer-reviewed research and expert-curated information. Nature: Publishes peer-reviewed articles on biology, environment, health, and physical sciences. Nature is an authoritative source for current information. If articles are difficult to read, you can search ...

  10. 55 Brilliant Research Topics For STEM Students

    There are several science research topics for STEM students. Below are some possible quantitative research topics for STEM students. A study of protease inhibitor and how it operates. A study of how men's exercise impacts DNA traits passed to children. A study of the future of commercial space flight.

  11. Quantitative Science Studies

    Quantitative Science Studies is the official open access journal of the International Society for Scientometrics and Informetrics (ISSI). It publishes theoretical and empirical research on science and the scientific workforce. Emphasis is placed on studies that provide insight into the system of science, general laws of scientific work ...

  12. 210 Best Quantitative Research Topics For STEM Students

    Here are the key characteristics of quantitative research topics for STEM Students: Measurable Data: Quantitative topics examine things that can be measured and quantified with numbers, allowing statistical analysis of the data. Statistical Analysis: Quantitative topics use mathematical statistics to analyze numerical data and spot patterns ...

  13. 199+ Quantitative Research Topics For STEM Students to Try Now

    30 Quantitative Research Topic Ideas For STEM Students. Investigating the properties and applications of novel materials created through 3D printing. Studying the effectiveness of virtual reality simulations for medical training programs. Analyzing the feasibility and methods for mineral extraction from asteroids.

  14. What Is Quantitative Research?

    Revised on June 22, 2023. Quantitative research is the process of collecting and analyzing numerical data. It can be used to find patterns and averages, make predictions, test causal relationships, and generalize results to wider populations. Quantitative research is the opposite of qualitative research, which involves collecting and analyzing ...

  15. 170+ Research Topics In Education (+ Free Webinar)

    The use of student data to inform instruction. The role of parental involvement in education. The effects of mindfulness practices in the classroom. The use of technology in the classroom. The role of critical thinking in education. The use of formative and summative assessments in the classroom.

  16. quantitative research studies: Topics by Science.gov

    2009-01-01. The purpose of this quantitative correlational research study was to investigate, describe, and measure factors influencing retention of nontraditional first and second year students at a university located in the Midwestern United States. Retention of adult students has become a major issue for many institutions of higher education ...

  17. 61 Interesting Psychology Research Topics (2024)

    Here are a few examples of in-demand pain-related psychology research topics: The connection between diabetic neuropathy and depression. Neurological pain and its connection to mental health disorders. Efficacy of meditation and mindfulness for pain management.

  18. A Quick Guide to Quantitative Research in the Social Sciences

    This resource is intended as an easy-to-use guide for anyone who needs some quick and simple advice on quantitative aspects of research in social sciences, covering subjects such as education, sociology, business, nursing. If you area qualitative researcher who needs to venture into the world of numbers, or a student instructed to undertake a quantitative research project despite a hatred for ...

  19. A Practical Guide to Writing Quantitative and Qualitative Research

    INTRODUCTION. Scientific research is usually initiated by posing evidenced-based research questions which are then explicitly restated as hypotheses.1,2 The hypotheses provide directions to guide the study, solutions, explanations, and expected results.3,4 Both research questions and hypotheses are essentially formulated based on conventional theories and real-world processes, which allow the ...

  20. 150+ Quantitative Research Topics For HumSS Students In 2023

    Environmental Ethics Research Topics For HumSS Students. Environmental ethics research topics in HumSS delve into the moral and ethical considerations of environmental and sustainability. Analyzing the ethics of mining practices in the Philippines. Investigating the moral responsibilities of corporations in environmental conservation.

  21. Methods for quantitative research in psychology

    Compare and contrast the major research designs. Explain how to judge the quality of a source for a literature review. Compare and contrast the kinds of research questions scientists ask. Explain what it means for an observation to be reliable. Compare and contrast forms of validity as they apply to the major research designs.

  22. Advances in quantitative research within the psychological sciences

    Psychology-based journals are not new to issues dedicated to quantitative methods. Many special issues and key invited articles have highlighted important advancements in methodology, each helping to promote methodological rigor.For example, the journal Health Psychology Review recently published an issue (2017, Volume 11, Issue 3) on statistical tools that can benefit the subdiscipline of ...

  23. 10 Research Question Examples to Guide your Research Project

    The first question asks for a ready-made solution, and is not focused or researchable. The second question is a clearer comparative question, but note that it may not be practically feasible. For a smaller research project or thesis, it could be narrowed down further to focus on the effectiveness of drunk driving laws in just one or two countries.

  24. Quantitative Research Topics Related to Humss Strand

    In this exploration, we delve into 80 quantitative research topics tailored for HumSS students, where the seemingly mundane becomes a treasure trove of insights. From the impact of social media on ...

  25. Artificial intelligence in wastewater treatment: Research Trends and

    One way to find reoccurring topics in a collection of research articles is to analyze keyword co-occurrences [47]. As shown in Figure 5, the network map in this research indicates the existence of six sizable groupings, or clusters, related to wastewater treatment. That is, cluster 1, represented by the color red, represents "biological and ...

  26. Many career options in applied psychology

    The best way to understand what applied psychological science is all about is to become familiar with some of the diverse career opportunities in which psychological science is used to provide the insights needed to address many questions and solve a wide variety of problems.

  27. NSF announces 4 new Engineering Research Centers focused on

    Engineering innovations transform our lives and energize the economy. The U.S. National Science Foundation announces a five-year investment of $104 million, with a potential 10-year investment of up to $208 million, in four new NSF Engineering Research Centers (ERCs) to create technology-powered solutions that benefit the nation for decades to come.

  28. Q&A with neurologists: Can your phone and AI track Parkinson's progression?

    Researchers say we're on the cusp of a new era where physicians will personalize care, adjusting medications and pacemakers based on videos captured at home by patients that can be analyzed by ...

  29. Professor William Pomerantz named Institute on the Environment Fellow

    MINNEAPOLIS / ST. PAUL (8/29/2024) - Professor William C. K. Pomerantz has been recently selected as a University of Minnesota Institute on the Environment (IonE) Fellow. IonE Fellows are established researchers and innovative thought leaders who have demonstrated excellence in disciplines related to environmental protection or sustainability, maintain a significant publication record ...

  30. Fiddler Joins Bumpers College Faculty, AAES In Nutrition & Dietetics

    Fiddler's joint appointment is with the college's Department of Food Science as well as the Arkansas Agricultural Experiment Station, the research arm of the U of A System Division of Agriculture. "We are very excited to have Dr. Fiddler join our program here at the University of Arkansas and the U of A System Division of Agriculture," says ...