• Python »
  • 3.12.5 Documentation »
  • The Python Language Reference »
  • 7. Simple statements
  • Theme Auto Light Dark |

7. Simple statements ¶

A simple statement is comprised within a single logical line. Several simple statements may occur on a single line separated by semicolons. The syntax for simple statements is:

7.1. Expression statements ¶

Expression statements are used (mostly interactively) to compute and write a value, or (usually) to call a procedure (a function that returns no meaningful result; in Python, procedures return the value None ). Other uses of expression statements are allowed and occasionally useful. The syntax for an expression statement is:

An expression statement evaluates the expression list (which may be a single expression).

In interactive mode, if the value is not None , it is converted to a string using the built-in repr() function and the resulting string is written to standard output on a line by itself (except if the result is None , so that procedure calls do not cause any output.)

7.2. Assignment statements ¶

Assignment statements are used to (re)bind names to values and to modify attributes or items of mutable objects:

(See section Primaries for the syntax definitions for attributeref , subscription , and slicing .)

An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right.

Assignment is defined recursively depending on the form of the target (list). When a target is part of a mutable object (an attribute reference, subscription or slicing), the mutable object must ultimately perform the assignment and decide about its validity, and may raise an exception if the assignment is unacceptable. The rules observed by various types and the exceptions raised are given with the definition of the object types (see section The standard type hierarchy ).

Assignment of an object to a target list, optionally enclosed in parentheses or square brackets, is recursively defined as follows.

If the target list is a single target with no trailing comma, optionally in parentheses, the object is assigned to that target.

If the target list contains one target prefixed with an asterisk, called a “starred” target: The object must be an iterable with at least as many items as there are targets in the target list, minus one. The first items of the iterable are assigned, from left to right, to the targets before the starred target. The final items of the iterable are assigned to the targets after the starred target. A list of the remaining items in the iterable is then assigned to the starred target (the list can be empty).

Else: The object must be an iterable with the same number of items as there are targets in the target list, and the items are assigned, from left to right, to the corresponding targets.

Assignment of an object to a single target is recursively defined as follows.

If the target is an identifier (name):

If the name does not occur in a global or nonlocal statement in the current code block: the name is bound to the object in the current local namespace.

Otherwise: the name is bound to the object in the global namespace or the outer namespace determined by nonlocal , respectively.

The name is rebound if it was already bound. This may cause the reference count for the object previously bound to the name to reach zero, causing the object to be deallocated and its destructor (if it has one) to be called.

If the target is an attribute reference: The primary expression in the reference is evaluated. It should yield an object with assignable attributes; if this is not the case, TypeError is raised. That object is then asked to assign the assigned object to the given attribute; if it cannot perform the assignment, it raises an exception (usually but not necessarily AttributeError ).

Note: If the object is a class instance and the attribute reference occurs on both sides of the assignment operator, the right-hand side expression, a.x can access either an instance attribute or (if no instance attribute exists) a class attribute. The left-hand side target a.x is always set as an instance attribute, creating it if necessary. Thus, the two occurrences of a.x do not necessarily refer to the same attribute: if the right-hand side expression refers to a class attribute, the left-hand side creates a new instance attribute as the target of the assignment:

This description does not necessarily apply to descriptor attributes, such as properties created with property() .

If the target is a subscription: The primary expression in the reference is evaluated. It should yield either a mutable sequence object (such as a list) or a mapping object (such as a dictionary). Next, the subscript expression is evaluated.

If the primary is a mutable sequence object (such as a list), the subscript must yield an integer. If it is negative, the sequence’s length is added to it. The resulting value must be a nonnegative integer less than the sequence’s length, and the sequence is asked to assign the assigned object to its item with that index. If the index is out of range, IndexError is raised (assignment to a subscripted sequence cannot add new items to a list).

If the primary is a mapping object (such as a dictionary), the subscript must have a type compatible with the mapping’s key type, and the mapping is then asked to create a key/value pair which maps the subscript to the assigned object. This can either replace an existing key/value pair with the same key value, or insert a new key/value pair (if no key with the same value existed).

For user-defined objects, the __setitem__() method is called with appropriate arguments.

If the target is a slicing: The primary expression in the reference is evaluated. It should yield a mutable sequence object (such as a list). The assigned object should be a sequence object of the same type. Next, the lower and upper bound expressions are evaluated, insofar they are present; defaults are zero and the sequence’s length. The bounds should evaluate to integers. If either bound is negative, the sequence’s length is added to it. The resulting bounds are clipped to lie between zero and the sequence’s length, inclusive. Finally, the sequence object is asked to replace the slice with the items of the assigned sequence. The length of the slice may be different from the length of the assigned sequence, thus changing the length of the target sequence, if the target sequence allows it.

CPython implementation detail: In the current implementation, the syntax for targets is taken to be the same as for expressions, and invalid syntax is rejected during the code generation phase, causing less detailed error messages.

Although the definition of assignment implies that overlaps between the left-hand side and the right-hand side are ‘simultaneous’ (for example a, b = b, a swaps two variables), overlaps within the collection of assigned-to variables occur left-to-right, sometimes resulting in confusion. For instance, the following program prints [0, 2] :

The specification for the *target feature.

7.2.1. Augmented assignment statements ¶

Augmented assignment is the combination, in a single statement, of a binary operation and an assignment statement:

(See section Primaries for the syntax definitions of the last three symbols.)

An augmented assignment evaluates the target (which, unlike normal assignment statements, cannot be an unpacking) and the expression list, performs the binary operation specific to the type of assignment on the two operands, and assigns the result to the original target. The target is only evaluated once.

An augmented assignment statement like x += 1 can be rewritten as x = x + 1 to achieve a similar, but not exactly equal effect. In the augmented version, x is only evaluated once. Also, when possible, the actual operation is performed in-place , meaning that rather than creating a new object and assigning that to the target, the old object is modified instead.

Unlike normal assignments, augmented assignments evaluate the left-hand side before evaluating the right-hand side. For example, a[i] += f(x) first looks-up a[i] , then it evaluates f(x) and performs the addition, and lastly, it writes the result back to a[i] .

With the exception of assigning to tuples and multiple targets in a single statement, the assignment done by augmented assignment statements is handled the same way as normal assignments. Similarly, with the exception of the possible in-place behavior, the binary operation performed by augmented assignment is the same as the normal binary operations.

For targets which are attribute references, the same caveat about class and instance attributes applies as for regular assignments.

7.2.2. Annotated assignment statements ¶

Annotation assignment is the combination, in a single statement, of a variable or attribute annotation and an optional assignment statement:

The difference from normal Assignment statements is that only a single target is allowed.

The assignment target is considered “simple” if it consists of a single name that is not enclosed in parentheses. For simple assignment targets, if in class or module scope, the annotations are evaluated and stored in a special class or module attribute __annotations__ that is a dictionary mapping from variable names (mangled if private) to evaluated annotations. This attribute is writable and is automatically created at the start of class or module body execution, if annotations are found statically.

If the assignment target is not simple (an attribute, subscript node, or parenthesized name), the annotation is evaluated if in class or module scope, but not stored.

If a name is annotated in a function scope, then this name is local for that scope. Annotations are never evaluated and stored in function scopes.

If the right hand side is present, an annotated assignment performs the actual assignment before evaluating annotations (where applicable). If the right hand side is not present for an expression target, then the interpreter evaluates the target except for the last __setitem__() or __setattr__() call.

The proposal that added syntax for annotating the types of variables (including class variables and instance variables), instead of expressing them through comments.

The proposal that added the typing module to provide a standard syntax for type annotations that can be used in static analysis tools and IDEs.

Changed in version 3.8: Now annotated assignments allow the same expressions in the right hand side as regular assignments. Previously, some expressions (like un-parenthesized tuple expressions) caused a syntax error.

7.3. The assert statement ¶

Assert statements are a convenient way to insert debugging assertions into a program:

The simple form, assert expression , is equivalent to

The extended form, assert expression1, expression2 , is equivalent to

These equivalences assume that __debug__ and AssertionError refer to the built-in variables with those names. In the current implementation, the built-in variable __debug__ is True under normal circumstances, False when optimization is requested (command line option -O ). The current code generator emits no code for an assert statement when optimization is requested at compile time. Note that it is unnecessary to include the source code for the expression that failed in the error message; it will be displayed as part of the stack trace.

Assignments to __debug__ are illegal. The value for the built-in variable is determined when the interpreter starts.

7.4. The pass statement ¶

pass is a null operation — when it is executed, nothing happens. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed, for example:

7.5. The del statement ¶

Deletion is recursively defined very similar to the way assignment is defined. Rather than spelling it out in full details, here are some hints.

Deletion of a target list recursively deletes each target, from left to right.

Deletion of a name removes the binding of that name from the local or global namespace, depending on whether the name occurs in a global statement in the same code block. If the name is unbound, a NameError exception will be raised.

Deletion of attribute references, subscriptions and slicings is passed to the primary object involved; deletion of a slicing is in general equivalent to assignment of an empty slice of the right type (but even this is determined by the sliced object).

Changed in version 3.2: Previously it was illegal to delete a name from the local namespace if it occurs as a free variable in a nested block.

7.6. The return statement ¶

return may only occur syntactically nested in a function definition, not within a nested class definition.

If an expression list is present, it is evaluated, else None is substituted.

return leaves the current function call with the expression list (or None ) as return value.

When return passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the function.

In a generator function, the return statement indicates that the generator is done and will cause StopIteration to be raised. The returned value (if any) is used as an argument to construct StopIteration and becomes the StopIteration.value attribute.

In an asynchronous generator function, an empty return statement indicates that the asynchronous generator is done and will cause StopAsyncIteration to be raised. A non-empty return statement is a syntax error in an asynchronous generator function.

7.7. The yield statement ¶

A yield statement is semantically equivalent to a yield expression . The yield statement can be used to omit the parentheses that would otherwise be required in the equivalent yield expression statement. For example, the yield statements

are equivalent to the yield expression statements

Yield expressions and statements are only used when defining a generator function, and are only used in the body of the generator function. Using yield in a function definition is sufficient to cause that definition to create a generator function instead of a normal function.

For full details of yield semantics, refer to the Yield expressions section.

7.8. The raise statement ¶

If no expressions are present, raise re-raises the exception that is currently being handled, which is also known as the active exception . If there isn’t currently an active exception, a RuntimeError exception is raised indicating that this is an error.

Otherwise, raise evaluates the first expression as the exception object. It must be either a subclass or an instance of BaseException . If it is a class, the exception instance will be obtained when needed by instantiating the class with no arguments.

The type of the exception is the exception instance’s class, the value is the instance itself.

A traceback object is normally created automatically when an exception is raised and attached to it as the __traceback__ attribute. You can create an exception and set your own traceback in one step using the with_traceback() exception method (which returns the same exception instance, with its traceback set to its argument), like so:

The from clause is used for exception chaining: if given, the second expression must be another exception class or instance. If the second expression is an exception instance, it will be attached to the raised exception as the __cause__ attribute (which is writable). If the expression is an exception class, the class will be instantiated and the resulting exception instance will be attached to the raised exception as the __cause__ attribute. If the raised exception is not handled, both exceptions will be printed:

A similar mechanism works implicitly if a new exception is raised when an exception is already being handled. An exception may be handled when an except or finally clause, or a with statement, is used. The previous exception is then attached as the new exception’s __context__ attribute:

Exception chaining can be explicitly suppressed by specifying None in the from clause:

Additional information on exceptions can be found in section Exceptions , and information about handling exceptions is in section The try statement .

Changed in version 3.3: None is now permitted as Y in raise X from Y .

Added the __suppress_context__ attribute to suppress automatic display of the exception context.

Changed in version 3.11: If the traceback of the active exception is modified in an except clause, a subsequent raise statement re-raises the exception with the modified traceback. Previously, the exception was re-raised with the traceback it had when it was caught.

7.9. The break statement ¶

break may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop.

It terminates the nearest enclosing loop, skipping the optional else clause if the loop has one.

If a for loop is terminated by break , the loop control target keeps its current value.

When break passes control out of a try statement with a finally clause, that finally clause is executed before really leaving the loop.

7.10. The continue statement ¶

continue may only occur syntactically nested in a for or while loop, but not nested in a function or class definition within that loop. It continues with the next cycle of the nearest enclosing loop.

When continue passes control out of a try statement with a finally clause, that finally clause is executed before really starting the next loop cycle.

7.11. The import statement ¶

The basic import statement (no from clause) is executed in two steps:

find a module, loading and initializing it if necessary

define a name or names in the local namespace for the scope where the import statement occurs.

When the statement contains multiple clauses (separated by commas) the two steps are carried out separately for each clause, just as though the clauses had been separated out into individual import statements.

The details of the first step, finding and loading modules, are described in greater detail in the section on the import system , which also describes the various types of packages and modules that can be imported, as well as all the hooks that can be used to customize the import system. Note that failures in this step may indicate either that the module could not be located, or that an error occurred while initializing the module, which includes execution of the module’s code.

If the requested module is retrieved successfully, it will be made available in the local namespace in one of three ways:

If the module name is followed by as , then the name following as is bound directly to the imported module.

If no other name is specified, and the module being imported is a top level module, the module’s name is bound in the local namespace as a reference to the imported module

If the module being imported is not a top level module, then the name of the top level package that contains the module is bound in the local namespace as a reference to the top level package. The imported module must be accessed using its full qualified name rather than directly

The from form uses a slightly more complex process:

find the module specified in the from clause, loading and initializing it if necessary;

for each of the identifiers specified in the import clauses:

check if the imported module has an attribute by that name

if not, attempt to import a submodule with that name and then check the imported module again for that attribute

if the attribute is not found, ImportError is raised.

otherwise, a reference to that value is stored in the local namespace, using the name in the as clause if it is present, otherwise using the attribute name

If the list of identifiers is replaced by a star ( '*' ), all public names defined in the module are bound in the local namespace for the scope where the import statement occurs.

The public names defined by a module are determined by checking the module’s namespace for a variable named __all__ ; if defined, it must be a sequence of strings which are names defined or imported by that module. The names given in __all__ are all considered public and are required to exist. If __all__ is not defined, the set of public names includes all names found in the module’s namespace which do not begin with an underscore character ( '_' ). __all__ should contain the entire public API. It is intended to avoid accidentally exporting items that are not part of the API (such as library modules which were imported and used within the module).

The wild card form of import — from module import * — is only allowed at the module level. Attempting to use it in class or function definitions will raise a SyntaxError .

When specifying what module to import you do not have to specify the absolute name of the module. When a module or package is contained within another package it is possible to make a relative import within the same top package without having to mention the package name. By using leading dots in the specified module or package after from you can specify how high to traverse up the current package hierarchy without specifying exact names. One leading dot means the current package where the module making the import exists. Two dots means up one package level. Three dots is up two levels, etc. So if you execute from . import mod from a module in the pkg package then you will end up importing pkg.mod . If you execute from ..subpkg2 import mod from within pkg.subpkg1 you will import pkg.subpkg2.mod . The specification for relative imports is contained in the Package Relative Imports section.

importlib.import_module() is provided to support applications that determine dynamically the modules to be loaded.

Raises an auditing event import with arguments module , filename , sys.path , sys.meta_path , sys.path_hooks .

7.11.1. Future statements ¶

A future statement is a directive to the compiler that a particular module should be compiled using syntax or semantics that will be available in a specified future release of Python where the feature becomes standard.

The future statement is intended to ease migration to future versions of Python that introduce incompatible changes to the language. It allows use of the new features on a per-module basis before the release in which the feature becomes standard.

A future statement must appear near the top of the module. The only lines that can appear before a future statement are:

the module docstring (if any),

blank lines, and

other future statements.

The only feature that requires using the future statement is annotations (see PEP 563 ).

All historical features enabled by the future statement are still recognized by Python 3. The list includes absolute_import , division , generators , generator_stop , unicode_literals , print_function , nested_scopes and with_statement . They are all redundant because they are always enabled, and only kept for backwards compatibility.

A future statement is recognized and treated specially at compile time: Changes to the semantics of core constructs are often implemented by generating different code. It may even be the case that a new feature introduces new incompatible syntax (such as a new reserved word), in which case the compiler may need to parse the module differently. Such decisions cannot be pushed off until runtime.

For any given release, the compiler knows which feature names have been defined, and raises a compile-time error if a future statement contains a feature not known to it.

The direct runtime semantics are the same as for any import statement: there is a standard module __future__ , described later, and it will be imported in the usual way at the time the future statement is executed.

The interesting runtime semantics depend on the specific feature enabled by the future statement.

Note that there is nothing special about the statement:

That is not a future statement; it’s an ordinary import statement with no special semantics or syntax restrictions.

Code compiled by calls to the built-in functions exec() and compile() that occur in a module M containing a future statement will, by default, use the new syntax or semantics associated with the future statement. This can be controlled by optional arguments to compile() — see the documentation of that function for details.

A future statement typed at an interactive interpreter prompt will take effect for the rest of the interpreter session. If an interpreter is started with the -i option, is passed a script name to execute, and the script includes a future statement, it will be in effect in the interactive session started after the script is executed.

The original proposal for the __future__ mechanism.

7.12. The global statement ¶

The global statement is a declaration which holds for the entire current code block. It means that the listed identifiers are to be interpreted as globals. It would be impossible to assign to a global variable without global , although free variables may refer to globals without being declared global.

Names listed in a global statement must not be used in the same code block textually preceding that global statement.

Names listed in a global statement must not be defined as formal parameters, or as targets in with statements or except clauses, or in a for target list, class definition, function definition, import statement, or variable annotation.

CPython implementation detail: The current implementation does not enforce some of these restrictions, but programs should not abuse this freedom, as future implementations may enforce them or silently change the meaning of the program.

Programmer’s note: global is a directive to the parser. It applies only to code parsed at the same time as the global statement. In particular, a global statement contained in a string or code object supplied to the built-in exec() function does not affect the code block containing the function call, and code contained in such a string is unaffected by global statements in the code containing the function call. The same applies to the eval() and compile() functions.

7.13. The nonlocal statement ¶

When the definition of a function or class is nested (enclosed) within the definitions of other functions, its nonlocal scopes are the local scopes of the enclosing functions. The nonlocal statement causes the listed identifiers to refer to names previously bound in nonlocal scopes. It allows encapsulated code to rebind such nonlocal identifiers. If a name is bound in more than one nonlocal scope, the nearest binding is used. If a name is not bound in any nonlocal scope, or if there is no nonlocal scope, a SyntaxError is raised.

The nonlocal statement applies to the entire scope of a function or class body. A SyntaxError is raised if a variable is used or assigned to prior to its nonlocal declaration in the scope.

The specification for the nonlocal statement.

Programmer’s note: nonlocal is a directive to the parser and applies only to code parsed along with it. See the note for the global statement.

7.14. The type statement ¶

The type statement declares a type alias, which is an instance of typing.TypeAliasType .

For example, the following statement creates a type alias:

This code is roughly equivalent to:

annotation-def indicates an annotation scope , which behaves mostly like a function, but with several small differences.

The value of the type alias is evaluated in the annotation scope. It is not evaluated when the type alias is created, but only when the value is accessed through the type alias’s __value__ attribute (see Lazy evaluation ). This allows the type alias to refer to names that are not yet defined.

Type aliases may be made generic by adding a type parameter list after the name. See Generic type aliases for more.

type is a soft keyword .

Added in version 3.12.

Introduced the type statement and syntax for generic classes and functions.

Table of Contents

  • 7.1. Expression statements
  • 7.2.1. Augmented assignment statements
  • 7.2.2. Annotated assignment statements
  • 7.3. The assert statement
  • 7.4. The pass statement
  • 7.5. The del statement
  • 7.6. The return statement
  • 7.7. The yield statement
  • 7.8. The raise statement
  • 7.9. The break statement
  • 7.10. The continue statement
  • 7.11.1. Future statements
  • 7.12. The global statement
  • 7.13. The nonlocal statement
  • 7.14. The type statement

Previous topic

6. Expressions

8. Compound statements

  • Report a Bug
  • Show Source

Python's Assignment Operator: Write Robust Assignments

Python's Assignment Operator: Write Robust Assignments

Table of Contents

The Assignment Statement Syntax

The assignment operator, assignments and variables, other assignment syntax, initializing and updating variables, making multiple variables refer to the same object, updating lists through indices and slices, adding and updating dictionary keys, doing parallel assignments, unpacking iterables, providing default argument values, augmented mathematical assignment operators, augmented assignments for concatenation and repetition, augmented bitwise assignment operators, annotated assignment statements, assignment expressions with the walrus operator, managed attribute assignments, define or call a function, work with classes, import modules and objects, use a decorator, access the control variable in a for loop or a comprehension, use the as keyword, access the _ special variable in an interactive session, built-in objects, named constants.

Python’s assignment operators allow you to define assignment statements . This type of statement lets you create, initialize, and update variables throughout your code. Variables are a fundamental cornerstone in every piece of code, and assignment statements give you complete control over variable creation and mutation.

Learning about the Python assignment operator and its use for writing assignment statements will arm you with powerful tools for writing better and more robust Python code.

In this tutorial, you’ll:

  • Use Python’s assignment operator to write assignment statements
  • Take advantage of augmented assignments in Python
  • Explore assignment variants, like assignment expressions and managed attributes
  • Become aware of illegal and dangerous assignments in Python

You’ll dive deep into Python’s assignment statements. To get the most out of this tutorial, you should be comfortable with several basic topics, including variables , built-in data types , comprehensions , functions , and Python keywords . Before diving into some of the later sections, you should also be familiar with intermediate topics, such as object-oriented programming , constants , imports , type hints , properties , descriptors , and decorators .

Free Source Code: Click here to download the free assignment operator source code that you’ll use to write assignment statements that allow you to create, initialize, and update variables in your code.

Assignment Statements and the Assignment Operator

One of the most powerful programming language features is the ability to create, access, and mutate variables . In Python, a variable is a name that refers to a concrete value or object, allowing you to reuse that value or object throughout your code.

To create a new variable or to update the value of an existing one in Python, you’ll use an assignment statement . This statement has the following three components:

  • A left operand, which must be a variable
  • The assignment operator ( = )
  • A right operand, which can be a concrete value , an object , or an expression

Here’s how an assignment statement will generally look in Python:

Here, variable represents a generic Python variable, while expression represents any Python object that you can provide as a concrete value—also known as a literal —or an expression that evaluates to a value.

To execute an assignment statement like the above, Python runs the following steps:

  • Evaluate the right-hand expression to produce a concrete value or object . This value will live at a specific memory address in your computer.
  • Store the object’s memory address in the left-hand variable . This step creates a new variable if the current one doesn’t already exist or updates the value of an existing variable.

The second step shows that variables work differently in Python than in other programming languages. In Python, variables aren’t containers for objects. Python variables point to a value or object through its memory address. They store memory addresses rather than objects.

This behavior difference directly impacts how data moves around in Python, which is always by reference . In most cases, this difference is irrelevant in your day-to-day coding, but it’s still good to know.

The central component of an assignment statement is the assignment operator . This operator is represented by the = symbol, which separates two operands:

  • A value or an expression that evaluates to a concrete value

Operators are special symbols that perform mathematical , logical , and bitwise operations in a programming language. The objects (or object) on which an operator operates are called operands .

Unary operators, like the not Boolean operator, operate on a single object or operand, while binary operators act on two. That means the assignment operator is a binary operator.

Note: Like C , Python uses == for equality comparisons and = for assignments. Unlike C, Python doesn’t allow you to accidentally use the assignment operator ( = ) in an equality comparison.

Equality is a symmetrical relationship, and assignment is not. For example, the expression a == 42 is equivalent to 42 == a . In contrast, the statement a = 42 is correct and legal, while 42 = a isn’t allowed. You’ll learn more about illegal assignments later on.

The right-hand operand in an assignment statement can be any Python object, such as a number , list , string , dictionary , or even a user-defined object. It can also be an expression. In the end, expressions always evaluate to concrete objects, which is their return value.

Here are a few examples of assignments in Python:

The first two sample assignments in this code snippet use concrete values, also known as literals , to create and initialize number and greeting . The third example assigns the result of a math expression to the total variable, while the last example uses a Boolean expression.

Note: You can use the built-in id() function to inspect the memory address stored in a given variable.

Here’s a short example of how this function works:

The number in your output represents the memory address stored in number . Through this address, Python can access the content of number , which is the integer 42 in this example.

If you run this code on your computer, then you’ll get a different memory address because this value varies from execution to execution and computer to computer.

Unlike expressions, assignment statements don’t have a return value because their purpose is to make the association between the variable and its value. That’s why the Python interpreter doesn’t issue any output in the above examples.

Now that you know the basics of how to write an assignment statement, it’s time to tackle why you would want to use one.

The assignment statement is the explicit way for you to associate a name with an object in Python. You can use this statement for two main purposes:

  • Creating and initializing new variables
  • Updating the values of existing variables

When you use a variable name as the left operand in an assignment statement for the first time, you’re creating a new variable. At the same time, you’re initializing the variable to point to the value of the right operand.

On the other hand, when you use an existing variable in a new assignment, you’re updating or mutating the variable’s value. Strictly speaking, every new assignment will make the variable refer to a new value and stop referring to the old one. Python will garbage-collect all the values that are no longer referenced by any existing variable.

Assignment statements not only assign a value to a variable but also determine the data type of the variable at hand. This additional behavior is another important detail to consider in this kind of statement.

Because Python is a dynamically typed language, successive assignments to a given variable can change the variable’s data type. Changing the data type of a variable during a program’s execution is considered bad practice and highly discouraged. It can lead to subtle bugs that can be difficult to track down.

Unlike in math equations, in Python assignments, the left operand must be a variable rather than an expression or a value. For example, the following construct is illegal, and Python flags it as invalid syntax:

In this example, you have expressions on both sides of the = sign, and this isn’t allowed in Python code. The error message suggests that you may be confusing the equality operator with the assignment one, but that’s not the case. You’re really running an invalid assignment.

To correct this construct and convert it into a valid assignment, you’ll have to do something like the following:

In this code snippet, you first import the sqrt() function from the math module. Then you isolate the hypotenuse variable in the original equation by using the sqrt() function. Now your code works correctly.

Now you know what kind of syntax is invalid. But don’t get the idea that assignment statements are rigid and inflexible. In fact, they offer lots of room for customization, as you’ll learn next.

Python’s assignment statements are pretty flexible and versatile. You can write them in several ways, depending on your specific needs and preferences. Here’s a quick summary of the main ways to write assignments in Python:

Up to this point, you’ve mostly learned about the base assignment syntax in the above code snippet. In the following sections, you’ll learn about multiple, parallel, and augmented assignments. You’ll also learn about assignments with iterable unpacking.

Read on to see the assignment statements in action!

Assignment Statements in Action

You’ll find and use assignment statements everywhere in your Python code. They’re a fundamental part of the language, providing an explicit way to create, initialize, and mutate variables.

You can use assignment statements with plain names, like number or counter . You can also use assignments in more complicated scenarios, such as with:

  • Qualified attribute names , like user.name
  • Indices and slices of mutable sequences, like a_list[i] and a_list[i:j]
  • Dictionary keys , like a_dict[key]

This list isn’t exhaustive. However, it gives you some idea of how flexible these statements are. You can even assign multiple values to an equal number of variables in a single line, commonly known as parallel assignment . Additionally, you can simultaneously assign the values in an iterable to a comma-separated group of variables in what’s known as an iterable unpacking operation.

In the following sections, you’ll dive deeper into all these topics and a few other exciting things that you can do with assignment statements in Python.

The most elementary use case of an assignment statement is to create a new variable and initialize it using a particular value or expression:

All these statements create new variables, assigning them initial values or expressions. For an initial value, you should always use the most sensible and least surprising value that you can think of. For example, initializing a counter to something different from 0 may be confusing and unexpected because counters almost always start having counted no objects.

Updating a variable’s current value or state is another common use case of assignment statements. In Python, assigning a new value to an existing variable doesn’t modify the variable’s current value. Instead, it causes the variable to refer to a different value. The previous value will be garbage-collected if no other variable refers to it.

Consider the following examples:

These examples run two consecutive assignments on the same variable. The first one assigns the string "Hello, World!" to a new variable named greeting .

The second assignment updates the value of greeting by reassigning it the "Hi, Pythonistas!" string. In this example, the original value of greeting —the "Hello, World!" string— is lost and garbage-collected. From this point on, you can’t access the old "Hello, World!" string.

Even though running multiple assignments on the same variable during a program’s execution is common practice, you should use this feature with caution. Changing the value of a variable can make your code difficult to read, understand, and debug. To comprehend the code fully, you’ll have to remember all the places where the variable was changed and the sequential order of those changes.

Because assignments also define the data type of their target variables, it’s also possible for your code to accidentally change the type of a given variable at runtime. A change like this can lead to breaking errors, like AttributeError exceptions. Remember that strings don’t have the same methods and attributes as lists or dictionaries, for example.

In Python, you can make several variables reference the same object in a multiple-assignment line. This can be useful when you want to initialize several similar variables using the same initial value:

In this example, you chain two assignment operators in a single line. This way, your two variables refer to the same initial value of 0 . Note how both variables hold the same memory address, so they point to the same instance of 0 .

When it comes to integer variables, Python exhibits a curious behavior. It provides a numeric interval where multiple assignments behave the same as independent assignments. Consider the following examples:

To create n and m , you use independent assignments. Therefore, they should point to different instances of the number 42 . However, both variables hold the same object, which you confirm by comparing their corresponding memory addresses.

Now check what happens when you use a greater initial value:

Now n and m hold different memory addresses, which means they point to different instances of the integer number 300 . In contrast, when you use multiple assignments, both variables refer to the same object. This tiny difference can save you small bits of memory if you frequently initialize integer variables in your code.

The implicit behavior of making independent assignments point to the same integer number is actually an optimization called interning . It consists of globally caching the most commonly used integer values in day-to-day programming.

Under the hood, Python defines a numeric interval in which interning takes place. That’s the interning interval for integer numbers. You can determine this interval using a small script like the following:

This script helps you determine the interning interval by comparing integer numbers from -10 to 500 . If you run the script from your command line, then you’ll get an output like the following:

This output means that if you use a single number between -5 and 256 to initialize several variables in independent statements, then all these variables will point to the same object, which will help you save small bits of memory in your code.

In contrast, if you use a number that falls outside of the interning interval, then your variables will point to different objects instead. Each of these objects will occupy a different memory spot.

You can use the assignment operator to mutate the value stored at a given index in a Python list. The operator also works with list slices . The syntax to write these types of assignment statements is the following:

In the first construct, expression can return any Python object, including another list. In the second construct, expression must return a series of values as a list, tuple, or any other sequence. You’ll get a TypeError if expression returns a single value.

Note: When creating slice objects, you can use up to three arguments. These arguments are start , stop , and step . They define the number that starts the slice, the number at which the slicing must stop retrieving values, and the step between values.

Here’s an example of updating an individual value in a list:

In this example, you update the value at index 2 using an assignment statement. The original number at that index was 7 , and after the assignment, the number is 3 .

Note: Using indices and the assignment operator to update a value in a tuple or a character in a string isn’t possible because tuples and strings are immutable data types in Python.

Their immutability means that you can’t change their items in place :

You can’t use the assignment operator to change individual items in tuples or strings. These data types are immutable and don’t support item assignments.

It’s important to note that you can’t add new values to a list by using indices that don’t exist in the target list:

In this example, you try to add a new value to the end of numbers by using an index that doesn’t exist. This assignment isn’t allowed because there’s no way to guarantee that new indices will be consecutive. If you ever want to add a single value to the end of a list, then use the .append() method.

If you want to update several consecutive values in a list, then you can use slicing and an assignment statement:

In the first example, you update the letters between indices 1 and 3 without including the letter at 3 . The second example updates the letters from index 3 until the end of the list. Note that this slicing appends a new value to the list because the target slice is shorter than the assigned values.

Also note that the new values were provided through a tuple, which means that this type of assignment allows you to use other types of sequences to update your target list.

The third example updates a single value using a slice where both indices are equal. In this example, the assignment inserts a new item into your target list.

In the final example, you use a step of 2 to replace alternating letters with their lowercase counterparts. This slicing starts at index 1 and runs through the whole list, stepping by two items each time.

Updating the value of an existing key or adding new key-value pairs to a dictionary is another common use case of assignment statements. To do these operations, you can use the following syntax:

The first construct helps you update the current value of an existing key, while the second construct allows you to add a new key-value pair to the dictionary.

For example, to update an existing key, you can do something like this:

In this example, you update the current inventory of oranges in your store using an assignment. The left operand is the existing dictionary key, and the right operand is the desired new value.

While you can’t add new values to a list by assignment, dictionaries do allow you to add new key-value pairs using the assignment operator. In the example below, you add a lemon key to inventory :

In this example, you successfully add a new key-value pair to your inventory with 100 units. This addition is possible because dictionaries don’t have consecutive indices but unique keys, which are safe to add by assignment.

The assignment statement does more than assign the result of a single expression to a single variable. It can also cope nicely with assigning multiple values to multiple variables simultaneously in what’s known as a parallel assignment .

Here’s the general syntax for parallel assignments in Python:

Note that the left side of the statement can be either a tuple or a list of variables. Remember that to create a tuple, you just need a series of comma-separated elements. In this case, these elements must be variables.

The right side of the statement must be a sequence or iterable of values or expressions. In any case, the number of elements in the right operand must match the number of variables on the left. Otherwise, you’ll get a ValueError exception.

In the following example, you compute the two solutions of a quadratic equation using a parallel assignment:

In this example, you first import sqrt() from the math module. Then you initialize the equation’s coefficients in a parallel assignment.

The equation’s solution is computed in another parallel assignment. The left operand contains a tuple of two variables, x1 and x2 . The right operand consists of a tuple of expressions that compute the solutions for the equation. Note how each result is assigned to each variable by position.

A classical use case of parallel assignment is to swap values between variables:

The highlighted line does the magic and swaps the values of previous_value and next_value at the same time. Note that in a programming language that doesn’t support this kind of assignment, you’d have to use a temporary variable to produce the same effect:

In this example, instead of using parallel assignment to swap values between variables, you use a new variable to temporarily store the value of previous_value to avoid losing its reference.

For a concrete example of when you’d need to swap values between variables, say you’re learning how to implement the bubble sort algorithm , and you come up with the following function:

In the highlighted line, you use a parallel assignment to swap values in place if the current value is less than the next value in the input list. To dive deeper into the bubble sort algorithm and into sorting algorithms in general, check out Sorting Algorithms in Python .

You can use assignment statements for iterable unpacking in Python. Unpacking an iterable means assigning its values to a series of variables one by one. The iterable must be the right operand in the assignment, while the variables must be the left operand.

Like in parallel assignments, the variables must come as a tuple or list. The number of variables must match the number of values in the iterable. Alternatively, you can use the unpacking operator ( * ) to grab several values in a variable if the number of variables doesn’t match the iterable length.

Here’s the general syntax for iterable unpacking in Python:

Iterable unpacking is a powerful feature that you can use all around your code. It can help you write more readable and concise code. For example, you may find yourself doing something like this:

Whenever you do something like this in your code, go ahead and replace it with a more readable iterable unpacking using a single and elegant assignment, like in the following code snippet:

The numbers list on the right side contains four values. The assignment operator unpacks these values into the four variables on the left side of the statement. The values in numbers get assigned to variables in the same order that they appear in the iterable. The assignment is done by position.

Note: Because Python sets are also iterables, you can use them in an iterable unpacking operation. However, it won’t be clear which value goes to which variable because sets are unordered data structures.

The above example shows the most common form of iterable unpacking in Python. The main condition for the example to work is that the number of variables matches the number of values in the iterable.

What if you don’t know the iterable length upfront? Will the unpacking work? It’ll work if you use the * operator to pack several values into one of your target variables.

For example, say that you want to unpack the first and second values in numbers into two different variables. Additionally, you would like to pack the rest of the values in a single variable conveniently called rest . In this case, you can use the unpacking operator like in the following code:

In this example, first and second hold the first and second values in numbers , respectively. These values are assigned by position. The * operator packs all the remaining values in the input iterable into rest .

The unpacking operator ( * ) can appear at any position in your series of target variables. However, you can only use one instance of the operator:

The iterable unpacking operator works in any position in your list of variables. Note that you can only use one unpacking operator per assignment. Using more than one unpacking operator isn’t allowed and raises a SyntaxError .

Dropping away unwanted values from the iterable is a common use case for the iterable unpacking operator. Consider the following example:

In Python, if you want to signal that a variable won’t be used, then you use an underscore ( _ ) as the variable’s name. In this example, useful holds the only value that you need to use from the input iterable. The _ variable is a placeholder that guarantees that the unpacking works correctly. You won’t use the values that end up in this disposable variable.

Note: In the example above, if your target iterable is a sequence data type, such as a list or tuple, then it’s best to access its last item directly.

To do this, you can use the -1 index:

Using -1 gives you access to the last item of any sequence data type. In contrast, if you’re dealing with iterators , then you won’t be able to use indices. That’s when the *_ syntax comes to your rescue.

The pattern used in the above example comes in handy when you have a function that returns multiple values, and you only need a few of these values in your code. The os.walk() function may provide a good example of this situation.

This function allows you to iterate over the content of a directory recursively. The function returns a generator object that yields three-item tuples. Each tuple contains the following items:

  • The path to the current directory as a string
  • The names of all the immediate subdirectories as a list of strings
  • The names of all the files in the current directory as a list of strings

Now say that you want to iterate over your home directory and list only the files. You can do something like this:

This code will issue a long output depending on the current content of your home directory. Note that you need to provide a string with the path to your user folder for the example to work. The _ placeholder variable will hold the unwanted data.

In contrast, the filenames variable will hold the list of files in the current directory, which is the data that you need. The code will print the list of filenames. Go ahead and give it a try!

The assignment operator also comes in handy when you need to provide default argument values in your functions and methods. Default argument values allow you to define functions that take arguments with sensible defaults. These defaults allow you to call the function with specific values or to simply rely on the defaults.

As an example, consider the following function:

This function takes one argument, called name . This argument has a sensible default value that’ll be used when you call the function without arguments. To provide this sensible default value, you use an assignment.

Note: According to PEP 8 , the style guide for Python code, you shouldn’t use spaces around the assignment operator when providing default argument values in function definitions.

Here’s how the function works:

If you don’t provide a name during the call to greet() , then the function uses the default value provided in the definition. If you provide a name, then the function uses it instead of the default one.

Up to this point, you’ve learned a lot about the Python assignment operator and how to use it for writing different types of assignment statements. In the following sections, you’ll dive into a great feature of assignment statements in Python. You’ll learn about augmented assignments .

Augmented Assignment Operators in Python

Python supports what are known as augmented assignments . An augmented assignment combines the assignment operator with another operator to make the statement more concise. Most Python math and bitwise operators have an augmented assignment variation that looks something like this:

Note that $ isn’t a valid Python operator. In this example, it’s a placeholder for a generic operator. This statement works as follows:

  • Evaluate expression to produce a value.
  • Run the operation defined by the operator that prefixes the = sign, using the previous value of variable and the return value of expression as operands.
  • Assign the resulting value back to variable .

In practice, an augmented assignment like the above is equivalent to the following statement:

As you can conclude, augmented assignments are syntactic sugar . They provide a shorthand notation for a specific and popular kind of assignment.

For example, say that you need to define a counter variable to count some stuff in your code. You can use the += operator to increment counter by 1 using the following code:

In this example, the += operator, known as augmented addition , adds 1 to the previous value in counter each time you run the statement counter += 1 .

It’s important to note that unlike regular assignments, augmented assignments don’t create new variables. They only allow you to update existing variables. If you use an augmented assignment with an undefined variable, then you get a NameError :

Python evaluates the right side of the statement before assigning the resulting value back to the target variable. In this specific example, when Python tries to compute x + 1 , it finds that x isn’t defined.

Great! You now know that an augmented assignment consists of combining the assignment operator with another operator, like a math or bitwise operator. To continue this discussion, you’ll learn which math operators have an augmented variation in Python.

An equation like x = x + b doesn’t make sense in math. But in programming, a statement like x = x + b is perfectly valid and can be extremely useful. It adds b to x and reassigns the result back to x .

As you already learned, Python provides an operator to shorten x = x + b . Yes, the += operator allows you to write x += b instead. Python also offers augmented assignment operators for most math operators. Here’s a summary:

Operator Description Example Equivalent
Adds the right operand to the left operand and stores the result in the left operand
Subtracts the right operand from the left operand and stores the result in the left operand
Multiplies the right operand with the left operand and stores the result in the left operand
Divides the left operand by the right operand and stores the result in the left operand
Performs of the left operand by the right operand and stores the result in the left operand
Finds the remainder of dividing the left operand by the right operand and stores the result in the left operand
Raises the left operand to the power of the right operand and stores the result in the left operand

The Example column provides generic examples of how to use the operators in actual code. Note that x must be previously defined for the operators to work correctly. On the other hand, y can be either a concrete value or an expression that returns a value.

Note: The matrix multiplication operator ( @ ) doesn’t support augmented assignments yet.

Consider the following example of matrix multiplication using NumPy arrays:

Note that the exception traceback indicates that the operation isn’t supported yet.

To illustrate how augmented assignment operators work, say that you need to create a function that takes an iterable of numeric values and returns their sum. You can write this function like in the code below:

In this function, you first initialize total to 0 . In each iteration, the loop adds a new number to total using the augmented addition operator ( += ). When the loop terminates, total holds the sum of all the input numbers. Variables like total are known as accumulators . The += operator is typically used to update accumulators.

Note: Computing the sum of a series of numeric values is a common operation in programming. Python provides the built-in sum() function for this specific computation.

Another interesting example of using an augmented assignment is when you need to implement a countdown while loop to reverse an iterable. In this case, you can use the -= operator:

In this example, custom_reversed() is a generator function because it uses yield . Calling the function creates an iterator that yields items from the input iterable in reverse order. To decrement the control variable, index , you use an augmented subtraction statement that subtracts 1 from the variable in every iteration.

Note: Similar to summing the values in an iterable, reversing an iterable is also a common requirement. Python provides the built-in reversed() function for this specific computation, so you don’t have to implement your own. The above example only intends to show the -= operator in action.

Finally, counters are a special type of accumulators that allow you to count objects. Here’s an example of a letter counter:

To create this counter, you use a Python dictionary. The keys store the letters. The values store the counts. Again, to increment the counter, you use an augmented addition.

Counters are so common in programming that Python provides a tool specially designed to facilitate the task of counting. Check out Python’s Counter: The Pythonic Way to Count Objects for a complete guide on how to use this tool.

The += and *= augmented assignment operators also work with sequences , such as lists, tuples, and strings. The += operator performs augmented concatenations , while the *= operator performs augmented repetition .

These operators behave differently with mutable and immutable data types:

Operator Description Example
Runs an augmented concatenation operation on the target sequence. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.
Adds to itself times. Mutable sequences are updated in place. If the sequence is immutable, then a new sequence is created and assigned back to the target name.

Note that the augmented concatenation operator operates on two sequences, while the augmented repetition operator works on a sequence and an integer number.

Consider the following examples and pay attention to the result of calling the id() function:

Mutable sequences like lists support the += augmented assignment operator through the .__iadd__() method, which performs an in-place addition. This method mutates the underlying list, appending new values to its end.

Note: If the left operand is mutable, then x += y may not be completely equivalent to x = x + y . For example, if you do list_1 = list_1 + list_2 instead of list_1 += list_2 above, then you’ll create a new list instead of mutating the existing one. This may be important if other variables refer to the same list.

Immutable sequences, such as tuples and strings, don’t provide an .__iadd__() method. Therefore, augmented concatenations fall back to the .__add__() method, which doesn’t modify the sequence in place but returns a new sequence.

There’s another difference between mutable and immutable sequences when you use them in an augmented concatenation. Consider the following examples:

With mutable sequences, the data to be concatenated can come as a list, tuple, string, or any other iterable. In contrast, with immutable sequences, the data can only come as objects of the same type. You can concatenate tuples to tuples and strings to strings, for example.

Again, the augmented repetition operator works with a sequence on the left side of the operator and an integer on the right side. This integer value represents the number of repetitions to get in the resulting sequence:

When the *= operator operates on a mutable sequence, it falls back to the .__imul__() method, which performs the operation in place, modifying the underlying sequence. In contrast, if *= operates on an immutable sequence, then .__mul__() is called, returning a new sequence of the same type.

Note: Values of n less than 0 are treated as 0 , which returns an empty sequence of the same data type as the target sequence on the left side of the *= operand.

Note that a_list[0] is a_list[3] returns True . This is because the *= operator doesn’t make a copy of the repeated data. It only reflects the data. This behavior can be a source of issues when you use the operator with mutable values.

For example, say that you want to create a list of lists to represent a matrix, and you need to initialize the list with n empty lists, like in the following code:

In this example, you use the *= operator to populate matrix with three empty lists. Now check out what happens when you try to populate the first sublist in matrix :

The appended values are reflected in the three sublists. This happens because the *= operator doesn’t make copies of the data that you want to repeat. It only reflects the data. Therefore, every sublist in matrix points to the same object and memory address.

If you ever need to initialize a list with a bunch of empty sublists, then use a list comprehension :

This time, when you populate the first sublist of matrix , your changes aren’t propagated to the other sublists. This is because all the sublists are different objects that live in different memory addresses.

Bitwise operators also have their augmented versions. The logic behind them is similar to that of the math operators. The following table summarizes the augmented bitwise operators that Python provides:

Operator Operation Example Equivalent
Augmented bitwise AND ( )
Augmented bitwise OR ( )
Augmented bitwise XOR ( )
Augmented bitwise right shift
Augmented bitwise left shift

The augmented bitwise assignment operators perform the intended operation by taking the current value of the left operand as a starting point for the computation. Consider the following example, which uses the & and &= operators:

Programmers who work with high-level languages like Python rarely use bitwise operations in day-to-day coding. However, these types of operations can be useful in some situations.

For example, say that you’re implementing a Unix-style permission system for your users to access a given resource. In this case, you can use the characters "r" for reading, "w" for writing, and "x" for execution permissions, respectively. However, using bit-based permissions could be more memory efficient:

You can assign permissions to your users with the OR bitwise operator or the augmented OR bitwise operator. Finally, you can use the bitwise AND operator to check if a user has a certain permission, as you did in the final two examples.

You’ve learned a lot about augmented assignment operators and statements in this and the previous sections. These operators apply to math, concatenation, repetition, and bitwise operations. Now you’re ready to look at other assignment variants that you can use in your code or find in other developers’ code.

Other Assignment Variants

So far, you’ve learned that Python’s assignment statements and the assignment operator are present in many different scenarios and use cases. Those use cases include variable creation and initialization, parallel assignments, iterable unpacking, augmented assignments, and more.

In the following sections, you’ll learn about a few variants of assignment statements that can be useful in your future coding. You can also find these assignment variants in other developers’ code. So, you should be aware of them and know how they work in practice.

In short, you’ll learn about:

  • Annotated assignment statements with type hints
  • Assignment expressions with the walrus operator
  • Managed attribute assignments with properties and descriptors
  • Implicit assignments in Python

These topics will take you through several interesting and useful examples that showcase the power of Python’s assignment statements.

PEP 526 introduced a dedicated syntax for variable annotation back in Python 3.6 . The syntax consists of the variable name followed by a colon ( : ) and the variable type:

Even though these statements declare three variables with their corresponding data types, the variables aren’t actually created or initialized. So, for example, you can’t use any of these variables in an augmented assignment statement:

If you try to use one of the previously declared variables in an augmented assignment, then you get a NameError because the annotation syntax doesn’t define the variable. To actually define it, you need to use an assignment.

The good news is that you can use the variable annotation syntax in an assignment statement with the = operator:

The first statement in this example is what you can call an annotated assignment statement in Python. You may ask yourself why you should use type annotations in this type of assignment if everybody can see that counter holds an integer number. You’re right. In this example, the variable type is unambiguous.

However, imagine what would happen if you found a variable initialization like the following:

What would be the data type of each user in users ? If the initialization of users is far away from the definition of the User class, then there’s no quick way to answer this question. To clarify this ambiguity, you can provide the appropriate type hint for users :

Now you’re clearly communicating that users will hold a list of User instances. Using type hints in assignment statements that initialize variables to empty collection data types—such as lists, tuples, or dictionaries—allows you to provide more context about how your code works. This practice will make your code more explicit and less error-prone.

Up to this point, you’ve learned that regular assignment statements with the = operator don’t have a return value. They just create or update variables. Therefore, you can’t use a regular assignment to assign a value to a variable within the context of an expression.

Python 3.8 changed this by introducing a new type of assignment statement through PEP 572 . This new statement is known as an assignment expression or named expression .

Note: Expressions are a special type of statement in Python. Their distinguishing characteristic is that expressions always have a return value, which isn’t the case with all types of statements.

Unlike regular assignments, assignment expressions have a return value, which is why they’re called expressions in the first place. This return value is automatically assigned to a variable. To write an assignment expression, you must use the walrus operator ( := ), which was named for its resemblance to the eyes and tusks of a walrus lying on its side.

The general syntax of an assignment statement is as follows:

This expression looks like a regular assignment. However, instead of using the assignment operator ( = ), it uses the walrus operator ( := ). For the expression to work correctly, the enclosing parentheses are required in most use cases. However, there are certain situations in which these parentheses are superfluous. Either way, they won’t hurt you.

Assignment expressions come in handy when you want to reuse the result of an expression or part of an expression without using a dedicated assignment to grab this value beforehand.

Note: Assignment expressions with the walrus operator have several practical use cases. They also have a few restrictions. For example, they’re illegal in certain contexts, such as lambda functions, parallel assignments, and augmented assignments.

For a deep dive into this special type of assignment, check out The Walrus Operator: Python’s Assignment Expressions .

A particularly handy use case for assignment expressions is when you need to grab the result of an expression used in the context of a conditional statement. For example, say that you need to write a function to compute the mean of a sample of numeric values. Without the walrus operator, you could do something like this:

In this example, the sample size ( n ) is a value that you need to reuse in two different computations. First, you need to check whether the sample has data points or not. Then you need to use the sample size to compute the mean. To be able to reuse n , you wrote a dedicated assignment statement at the beginning of your function to grab the sample size.

You can avoid this extra step by combining it with the first use of the target value, len(sample) , using an assignment expression like the following:

The assignment expression introduced in the conditional computes the sample size and assigns it to n . This way, you guarantee that you have a reference to the sample size to use in further computations.

Because the assignment expression returns the sample size anyway, the conditional can check whether that size equals 0 or not and then take a certain course of action depending on the result of this check. The return statement computes the sample’s mean and sends the result back to the function caller.

Python provides a few tools that allow you to fine-tune the operations behind the assignment of attributes. The attributes that run implicit operations on assignments are commonly referred to as managed attributes .

Properties are the most commonly used tool for providing managed attributes in your classes. However, you can also use descriptors and, in some cases, the .__setitem__() special method.

To understand what fine-tuning the operation behind an assignment means, say that you need a Point class that only allows numeric values for its coordinates, x and y . To write this class, you must set up a validation mechanism to reject non-numeric values. You can use properties to attach the validation functionality on top of x and y .

Here’s how you can write your class:

In Point , you use properties for the .x and .y coordinates. Each property has a getter and a setter method . The getter method returns the attribute at hand. The setter method runs the input validation using a try … except block and the built-in float() function. Then the method assigns the result to the actual attribute.

Here’s how your class works in practice:

When you use a property-based attribute as the left operand in an assignment statement, Python automatically calls the property’s setter method, running any computation from it.

Because both .x and .y are properties, the input validation runs whenever you assign a value to either attribute. In the first example, the input values are valid numbers and the validation passes. In the final example, "one" isn’t a valid numeric value, so the validation fails.

If you look at your Point class, you’ll note that it follows a repetitive pattern, with the getter and setter methods looking quite similar. To avoid this repetition, you can use a descriptor instead of a property.

A descriptor is a class that implements the descriptor protocol , which consists of four special methods :

  • .__get__() runs when you access the attribute represented by the descriptor.
  • .__set__() runs when you use the attribute in an assignment statement.
  • .__delete__() runs when you use the attribute in a del statement.
  • .__set_name__() sets the attribute’s name, creating a name-aware attribute.

Here’s how your code may look if you use a descriptor to represent the coordinates of your Point class:

You’ve removed repetitive code by defining Coordinate as a descriptor that manages the input validation in a single place. Go ahead and run the following code to try out the new implementation of Point :

Great! The class works as expected. Thanks to the Coordinate descriptor, you now have a more concise and non-repetitive version of your original code.

Another way to fine-tune the operations behind an assignment statement is to provide a custom implementation of .__setitem__() in your class. You’ll use this method in classes representing mutable data collections, such as custom list-like or dictionary-like classes.

As an example, say that you need to create a dictionary-like class that stores its keys in lowercase letters:

In this example, you create a dictionary-like class by subclassing UserDict from collections . Your class implements a .__setitem__() method, which takes key and value as arguments. The method uses str.lower() to convert key into lowercase letters before storing it in the underlying dictionary.

Python implicitly calls .__setitem__() every time you use a key as the left operand in an assignment statement. This behavior allows you to tweak how you process the assignment of keys in your custom dictionary.

Implicit Assignments in Python

Python implicitly runs assignments in many different contexts. In most cases, these implicit assignments are part of the language syntax. In other cases, they support specific behaviors.

Whenever you complete an action in the following list, Python runs an implicit assignment for you:

  • Define or call a function
  • Define or instantiate a class
  • Use the current instance , self
  • Import modules and objects
  • Use a decorator
  • Use the control variable in a for loop or a comprehension
  • Use the as qualifier in with statements , imports, and try … except blocks
  • Access the _ special variable in an interactive session

Behind the scenes, Python performs an assignment in every one of the above situations. In the following subsections, you’ll take a tour of all these situations.

When you define a function, the def keyword implicitly assigns a function object to your function’s name. Here’s an example:

From this point on, the name greet refers to a function object that lives at a given memory address in your computer. You can call the function using its name and a pair of parentheses with appropriate arguments. This way, you can reuse greet() wherever you need it.

If you call your greet() function with fellow as an argument, then Python implicitly assigns the input argument value to the name parameter on the function’s definition. The parameter will hold a reference to the input arguments.

When you define a class with the class keyword, you’re assigning a specific name to a class object . You can later use this name to create instances of that class. Consider the following example:

In this example, the name User holds a reference to a class object, which was defined in __main__.User . Like with a function, when you call the class’s constructor with the appropriate arguments to create an instance, Python assigns the arguments to the parameters defined in the class initializer .

Another example of implicit assignments is the current instance of a class, which in Python is called self by convention. This name implicitly gets a reference to the current object whenever you instantiate a class. Thanks to this implicit assignment, you can access .name and .job from within the class without getting a NameError in your code.

Import statements are another variant of implicit assignments in Python. Through an import statement, you assign a name to a module object, class, function, or any other imported object. This name is then created in your current namespace so that you can access it later in your code:

In this example, you import the sys module object from the standard library and assign it to the sys name, which is now available in your namespace, as you can conclude from the second call to the built-in dir() function.

You also run an implicit assignment when you use a decorator in your code. The decorator syntax is just a shortcut for a formal assignment like the following:

Here, you call decorator() with a function object as an argument. This call will typically add functionality on top of the existing function, func() , and return a function object, which is then reassigned to the func name.

The decorator syntax is syntactic sugar for replacing the previous assignment, which you can now write as follows:

Even though this new code looks pretty different from the above assignment, the code implicitly runs the same steps.

Another situation in which Python automatically runs an implicit assignment is when you use a for loop or a comprehension. In both cases, you can have one or more control variables that you then use in the loop or comprehension body:

The memory address of control_variable changes on each iteration of the loop. This is because Python internally reassigns a new value from the loop iterable to the loop control variable on each cycle.

The same behavior appears in comprehensions:

In the end, comprehensions work like for loops but use a more concise syntax. This comprehension creates a new list of strings that mimic the output from the previous example.

The as keyword in with statements, except clauses, and import statements is another example of an implicit assignment in Python. This time, the assignment isn’t completely implicit because the as keyword provides an explicit way to define the target variable.

In a with statement, the target variable that follows the as keyword will hold a reference to the context manager that you’re working with. As an example, say that you have a hello.txt file with the following content:

You want to open this file and print each of its lines on your screen. In this case, you can use the with statement to open the file using the built-in open() function.

In the example below, you accomplish this. You also add some calls to print() that display information about the target variable defined by the as keyword:

This with statement uses the open() function to open hello.txt . The open() function is a context manager that returns a text file object represented by an io.TextIOWrapper instance.

Since you’ve defined a hello target variable with the as keyword, now that variable holds a reference to the file object itself. You confirm this by printing the object and its memory address. Finally, the for loop iterates over the lines and prints this content to the screen.

When it comes to using the as keyword in the context of an except clause, the target variable will contain an exception object if any exception occurs:

In this example, you run a division that raises a ZeroDivisionError . The as keyword assigns the raised exception to error . Note that when you print the exception object, you get only the message because exceptions have a custom .__str__() method that supports this behavior.

There’s a final detail to remember when using the as specifier in a try … except block like the one in the above example. Once you leave the except block, the target variable goes out of scope , and you can’t use it anymore.

Finally, Python’s import statements also support the as keyword. In this context, you can use as to import objects with a different name:

In these examples, you use the as keyword to import the numpy package with the np name and pandas with the name pd . If you call dir() , then you’ll realize that np and pd are now in your namespace. However, the numpy and pandas names are not.

Using the as keyword in your imports comes in handy when you want to use shorter names for your objects or when you need to use different objects that originally had the same name in your code. It’s also useful when you want to make your imported names non-public using a leading underscore, like in import sys as _sys .

The final implicit assignment that you’ll learn about in this tutorial only occurs when you’re using Python in an interactive session. Every time you run a statement that returns a value, the interpreter stores the result in a special variable denoted by a single underscore character ( _ ).

You can access this special variable as you’d access any other variable:

These examples cover several situations in which Python internally uses the _ variable. The first two examples evaluate expressions. Expressions always have a return value, which is automatically assigned to the _ variable every time.

When it comes to function calls, note that if your function returns a fruitful value, then _ will hold it. In contrast, if your function returns None , then the _ variable will remain untouched.

The next example consists of a regular assignment statement. As you already know, regular assignments don’t return any value, so the _ variable isn’t updated after these statements run. Finally, note that accessing a variable in an interactive session returns the value stored in the target variable. This value is then assigned to the _ variable.

Note that since _ is a regular variable, you can use it in other expressions:

In this example, you first create a list of values. Then you call len() to get the number of values in the list. Python automatically stores this value in the _ variable. Finally, you use _ to compute the mean of your list of values.

Now that you’ve learned about some of the implicit assignments that Python runs under the hood, it’s time to dig into a final assignment-related topic. In the following few sections, you’ll learn about some illegal and dangerous assignments that you should be aware of and avoid in your code.

Illegal and Dangerous Assignments in Python

In Python, you’ll find a few situations in which using assignments is either forbidden or dangerous. You must be aware of these special situations and try to avoid them in your code.

In the following sections, you’ll learn when using assignment statements isn’t allowed in Python. You’ll also learn about some situations in which using assignments should be avoided if you want to keep your code consistent and robust.

You can’t use Python keywords as variable names in assignment statements. This kind of assignment is explicitly forbidden. If you try to use a keyword as a variable name in an assignment, then you get a SyntaxError :

Whenever you try to use a keyword as the left operand in an assignment statement, you get a SyntaxError . Keywords are an intrinsic part of the language and can’t be overridden.

If you ever feel the need to name one of your variables using a Python keyword, then you can append an underscore to the name of your variable:

In this example, you’re using the desired name for your variables. Because you added a final underscore to the names, Python doesn’t recognize them as keywords, so it doesn’t raise an error.

Note: Even though adding an underscore at the end of a name is an officially recommended practice , it can be confusing sometimes. Therefore, try to find an alternative name or use a synonym whenever you find yourself using this convention.

For example, you can write something like this:

In this example, using the name booking_class for your variable is way clearer and more descriptive than using class_ .

You’ll also find that you can use only a few keywords as part of the right operand in an assignment statement. Those keywords will generally define simple statements that return a value or object. These include lambda , and , or , not , True , False , None , in , and is . You can also use the for keyword when it’s part of a comprehension and the if keyword when it’s used as part of a ternary operator .

In an assignment, you can never use a compound statement as the right operand. Compound statements are those that require an indented block, such as for and while loops, conditionals, with statements, try … except blocks, and class or function definitions.

Sometimes, you need to name variables, but the desired or ideal name is already taken and used as a built-in name. If this is your case, think harder and find another name. Don’t shadow the built-in.

Shadowing built-in names can cause hard-to-identify problems in your code. A common example of this issue is using list or dict to name user-defined variables. In this case, you override the corresponding built-in names, which won’t work as expected if you use them later in your code.

Consider the following example:

The exception in this example may sound surprising. How come you can’t use list() to build a list from a call to map() that returns a generator of square numbers?

By using the name list to identify your list of numbers, you shadowed the built-in list name. Now that name points to a list object rather than the built-in class. List objects aren’t callable, so your code no longer works.

In Python, you’ll have nothing that warns against using built-in, standard-library, or even relevant third-party names to identify your own variables. Therefore, you should keep an eye out for this practice. It can be a source of hard-to-debug errors.

In programming, a constant refers to a name associated with a value that never changes during a program’s execution. Unlike other programming languages, Python doesn’t have a dedicated syntax for defining constants. This fact implies that Python doesn’t have constants in the strict sense of the word.

Python only has variables. If you need a constant in Python, then you’ll have to define a variable and guarantee that it won’t change during your code’s execution. To do that, you must avoid using that variable as the left operand in an assignment statement.

To tell other Python programmers that a given variable should be treated as a constant, you must write your variable’s name in capital letters with underscores separating the words. This naming convention has been adopted by the Python community and is a recommendation that you’ll find in the Constants section of PEP 8 .

In the following examples, you define some constants in Python:

The problem with these constants is that they’re actually variables. Nothing prevents you from changing their value during your code’s execution. So, at any time, you can do something like the following:

These assignments modify the value of two of your original constants. Python doesn’t complain about these changes, which can cause issues later in your code. As a Python developer, you must guarantee that named constants in your code remain constant.

The only way to do that is never to use named constants in an assignment statement other than the constant definition.

You’ve learned a lot about Python’s assignment operators and how to use them for writing assignment statements . With this type of statement, you can create, initialize, and update variables according to your needs. Now you have the required skills to fully manage the creation and mutation of variables in your Python code.

In this tutorial, you’ve learned how to:

  • Write assignment statements using Python’s assignment operators
  • Work with augmented assignments in Python
  • Explore assignment variants, like assignment expression and managed attributes
  • Identify illegal and dangerous assignments in Python

Learning about the Python assignment operator and how to use it in assignment statements is a fundamental skill in Python. It empowers you to write reliable and effective Python code.

🐍 Python Tricks 💌

Get a short & sweet Python Trick delivered to your inbox every couple of days. No spam ever. Unsubscribe any time. Curated by the Real Python team.

Python Tricks Dictionary Merge

About Leodanis Pozo Ramos

Leodanis Pozo Ramos

Leodanis is an industrial engineer who loves Python and software development. He's a self-taught Python developer with 6+ years of experience. He's an avid technical writer with a growing number of articles published on Real Python and other sites.

Each tutorial at Real Python is created by a team of developers so that it meets our high quality standards. The team members who worked on this tutorial are:

Aldren Santos

Master Real-World Python Skills With Unlimited Access to Real Python

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

Join us and get access to thousands of tutorials, hands-on video courses, and a community of expert Pythonistas:

What Do You Think?

What’s your #1 takeaway or favorite thing you learned? How are you going to put your newfound skills to use? Leave a comment below and let us know.

Commenting Tips: The most useful comments are those written with the goal of learning from or helping out other students. Get tips for asking good questions and get answers to common questions in our support portal . Looking for a real-time conversation? Visit the Real Python Community Chat or join the next “Office Hours” Live Q&A Session . Happy Pythoning!

Keep Learning

Related Topics: intermediate best-practices python

Keep reading Real Python by creating a free account or signing in:

Already have an account? Sign-In

Almost there! Complete this form and click the button below to gain instant access:

Python's Assignment Operator: Write Robust Assignments (Source Code)

🔒 No spam. We take your privacy seriously.

assignment statement is executed

  • Assignment Statement

An Assignment statement is a statement that is used to set a value to the variable name in a program .

Assignment statement allows a variable to hold different types of values during its program lifespan. Another way of understanding an assignment statement is, it stores a value in the memory location which is denoted by a variable name.

Assignment Statement Method

The symbol used in an assignment statement is called as an operator . The symbol is ‘=’ .

Note: The Assignment Operator should never be used for Equality purpose which is double equal sign ‘==’.

The Basic Syntax of Assignment Statement in a programming language is :

variable = expression ;

variable = variable name

expression = it could be either a direct value or a math expression/formula or a function call

Few programming languages such as Java, C, C++ require data type to be specified for the variable, so that it is easy to allocate memory space and store those values during program execution.

data_type variable_name = value ;

In the above-given examples, Variable ‘a’ is assigned a value in the same statement as per its defined data type. A data type is only declared for Variable ‘b’. In the 3 rd line of code, Variable ‘a’ is reassigned the value 25. The 4 th line of code assigns the value for Variable ‘b’.

Assignment Statement Forms

This is one of the most common forms of Assignment Statements. Here the Variable name is defined, initialized, and assigned a value in the same statement. This form is generally used when we want to use the Variable quite a few times and we do not want to change its value very frequently.

Tuple Assignment

Generally, we use this form when we want to define and assign values for more than 1 variable at the same time. This saves time and is an easy method. Note that here every individual variable has a different value assigned to it.

(Code In Python)

Sequence Assignment

(Code in Python)

Multiple-target Assignment or Chain Assignment

In this format, a single value is assigned to two or more variables.

Augmented Assignment

In this format, we use the combination of mathematical expressions and values for the Variable. Other augmented Assignment forms are: &=, -=, **=, etc.

Browse more Topics Under Data Types, Variables and Constants

  • Concept of Data types
  • Built-in Data Types
  • Constants in Programing Language 
  • Access Modifier
  • Variables of Built-in-Datatypes
  • Declaration/Initialization of Variables
  • Type Modifier

Few Rules for Assignment Statement

Few Rules to be followed while writing the Assignment Statements are:

  • Variable names must begin with a letter, underscore, non-number character. Each language has its own conventions.
  • The Data type defined and the variable value must match.
  • A variable name once defined can only be used once in the program. You cannot define it again to store other types of value.
  • If you assign a new value to an existing variable, it will overwrite the previous value and assign the new value.

FAQs on Assignment Statement

Q1. Which of the following shows the syntax of an  assignment statement ?

  • variablename = expression ;
  • expression = variable ;
  • datatype = variablename ;
  • expression = datatype variable ;

Answer – Option A.

Q2. What is an expression ?

  • Same as statement
  • List of statements that make up a program
  • Combination of literals, operators, variables, math formulas used to calculate a value
  • Numbers expressed in digits

Answer – Option C.

Q3. What are the two steps that take place when an  assignment statement  is executed?

  • Evaluate the expression, store the value in the variable
  • Reserve memory, fill it with value
  • Evaluate variable, store the result
  • Store the value in the variable, evaluate the expression.

Customize your course in 30 seconds

Which class are you in.

tutor

Data Types, Variables and Constants

  • Variables in Programming Language
  • Concept of Data Types
  • Declaration of Variables
  • Type Modifiers
  • Access Modifiers
  • Constants in Programming Language

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Download the App

Google Play

assignment statement is executed

  • Table of Contents
  • Course Home
  • Assignments
  • Peer Instruction (Instructor)
  • Peer Instruction (Student)
  • Change Course
  • Instructor's Page
  • Progress Page
  • Edit Profile
  • Change Password
  • Scratch ActiveCode
  • Scratch Activecode
  • Instructors Guide
  • About Runestone
  • Report A Problem
  • 1.1 Preface
  • 1.2 Why Programming? Why Java?
  • 1.3 Variables and Data Types
  • 1.4 Expressions and Assignment Statements
  • 1.5 Compound Assignment Operators
  • 1.6 Casting and Ranges of Variables
  • 1.7 Java Development Environments (optional)
  • 1.8 Unit 1 Summary
  • 1.9 Unit 1 Mixed Up Code Practice
  • 1.10 Unit 1 Coding Practice
  • 1.11 Multiple Choice Exercises
  • 1.12 Lesson Workspace
  • 1.3. Variables and Data Types" data-toggle="tooltip">
  • 1.5. Compound Assignment Operators' data-toggle="tooltip" >

Before you keep reading...

Runestone Academy can only continue if we get support from individuals like you. As a student you are well aware of the high cost of textbooks. Our mission is to provide great books to you for free, but we ask that you consider a $10 donation, more if you can or less if $10 is a burden.

Making great stuff takes time and $$. If you appreciate the book you are reading now and want to keep quality materials free for other students please consider a donation to Runestone Academy. We ask that you consider a $10 donation, but if you can give more thats great, if $10 is too much for your budget we would be happy with whatever you can afford as a show of support.

1.4. Expressions and Assignment Statements ¶

In this lesson, you will learn about assignment statements and expressions that contain math operators and variables.

1.4.1. Assignment Statements ¶

Remember that a variable holds a value that can change or vary. Assignment statements initialize or change the value stored in a variable using the assignment operator = . An assignment statement always has a single variable on the left hand side of the = sign. The value of the expression on the right hand side of the = sign (which can contain math operators and other variables) is copied into the memory location of the variable on the left hand side.

Assignment statement

Figure 1: Assignment Statement (variable = expression) ¶

Instead of saying equals for the = operator in an assignment statement, say “gets” or “is assigned” to remember that the variable on the left hand side gets or is assigned the value on the right. In the figure above, score is assigned the value of 10 times points (which is another variable) plus 5.

The following video by Dr. Colleen Lewis shows how variables can change values in memory using assignment statements.

As we saw in the video, we can set one variable to a copy of the value of another variable like y = x;. This won’t change the value of the variable that you are copying from.

coding exercise

Click on the Show CodeLens button to step through the code and see how the values of the variables change.

The program is supposed to figure out the total money value given the number of dimes, quarters and nickels. There is an error in the calculation of the total. Fix the error to compute the correct amount.

Calculate and print the total pay given the weekly salary and the number of weeks worked. Use string concatenation with the totalPay variable to produce the output Total Pay = $3000 . Don’t hardcode the number 3000 in your print statement.

exercise

Assume you have a package with a given height 3 inches and width 5 inches. If the package is rotated 90 degrees, you should swap the values for the height and width. The code below makes an attempt to swap the values stored in two variables h and w, which represent height and width. Variable h should end up with w’s initial value of 5 and w should get h’s initial value of 3. Unfortunately this code has an error and does not work. Use the CodeLens to step through the code to understand why it fails to swap the values in h and w.

1-4-7: Explain in your own words why the ErrorSwap program code does not swap the values stored in h and w.

Swapping two variables requires a third variable. Before assigning h = w , you need to store the original value of h in the temporary variable. In the mixed up programs below, drag the blocks to the right to put them in the right order.

The following has the correct code that uses a third variable named “temp” to swap the values in h and w.

The code is mixed up and contains one extra block which is not needed in a correct solution. Drag the needed blocks from the left into the correct order on the right, then check your solution. You will be told if any of the blocks are in the wrong order or if you need to remove one or more blocks.

After three incorrect attempts you will be able to use the Help Me button to make the problem easier.

Fix the code below to perform a correct swap of h and w. You need to add a new variable named temp to use for the swap.

1.4.2. Incrementing the value of a variable ¶

If you use a variable to keep score you would probably increment it (add one to the current value) whenever score should go up. You can do this by setting the variable to the current value of the variable plus one (score = score + 1) as shown below. The formula looks a little crazy in math class, but it makes sense in coding because the variable on the left is set to the value of the arithmetic expression on the right. So, the score variable is set to the previous value of score + 1.

Click on the Show CodeLens button to step through the code and see how the score value changes.

1-4-11: What is the value of b after the following code executes?

  • It sets the value for the variable on the left to the value from evaluating the right side. What is 5 * 2?
  • Correct. 5 * 2 is 10.

1-4-12: What are the values of x, y, and z after the following code executes?

  • x = 0, y = 1, z = 2
  • These are the initial values in the variable, but the values are changed.
  • x = 1, y = 2, z = 3
  • x changes to y's initial value, y's value is doubled, and z is set to 3
  • x = 2, y = 2, z = 3
  • Remember that the equal sign doesn't mean that the two sides are equal. It sets the value for the variable on the left to the value from evaluating the right side.
  • x = 1, y = 0, z = 3

1.4.3. Operators ¶

Java uses the standard mathematical operators for addition ( + ), subtraction ( - ), multiplication ( * ), and division ( / ). Arithmetic expressions can be of type int or double. An arithmetic operation that uses two int values will evaluate to an int value. An arithmetic operation that uses at least one double value will evaluate to a double value. (You may have noticed that + was also used to put text together in the input program above – more on this when we talk about strings.)

Java uses the operator == to test if the value on the left is equal to the value on the right and != to test if two items are not equal. Don’t get one equal sign = confused with two equal signs == ! They mean different things in Java. One equal sign is used to assign a value to a variable. Two equal signs are used to test a variable to see if it is a certain value and that returns true or false as you’ll see below. Use == and != only with int values and not doubles because double values are an approximation and 3.3333 will not equal 3.3334 even though they are very close.

Run the code below to see all the operators in action. Do all of those operators do what you expected? What about 2 / 3 ? Isn’t surprising that it prints 0 ? See the note below.

When Java sees you doing integer division (or any operation with integers) it assumes you want an integer result so it throws away anything after the decimal point in the answer, essentially rounding down the answer to a whole number. If you need a double answer, you should make at least one of the values in the expression a double like 2.0.

With division, another thing to watch out for is dividing by 0. An attempt to divide an integer by zero will result in an ArithmeticException error message. Try it in one of the active code windows above.

Operators can be used to create compound expressions with more than one operator. You can either use a literal value which is a fixed value like 2, or variables in them. When compound expressions are evaluated, operator precedence rules are used, so that *, /, and % are done before + and -. However, anything in parentheses is done first. It doesn’t hurt to put in extra parentheses if you are unsure as to what will be done first.

In the example below, try to guess what it will print out and then run it to see if you are right. Remember to consider operator precedence .

1-4-15: Consider the following code segment. Be careful about integer division.

What is printed when the code segment is executed?

  • 0.666666666666667
  • Don't forget that division and multiplication will be done first due to operator precedence.
  • Yes, this is equivalent to (5 + ((a/b)*c) - 1).
  • Don't forget that division and multiplication will be done first due to operator precedence, and that an int/int gives an int result where it is rounded down to the nearest int.

1-4-16: Consider the following code segment.

What is the value of the expression?

  • Dividing an integer by an integer results in an integer
  • Correct. Dividing an integer by an integer results in an integer
  • The value 5.5 will be rounded down to 5

1-4-17: Consider the following code segment.

  • Correct. Dividing a double by an integer results in a double
  • Dividing a double by an integer results in a double

1-4-18: Consider the following code segment.

  • Correct. Dividing an integer by an double results in a double
  • Dividing an integer by an double results in a double

1.4.4. The Modulo Operator ¶

The percent sign operator ( % ) is the mod (modulo) or remainder operator. The mod operator ( x % y ) returns the remainder after you divide x (first number) by y (second number) so 5 % 2 will return 1 since 2 goes into 5 two times with a remainder of 1. Remember long division when you had to specify how many times one number went into another evenly and the remainder? That remainder is what is returned by the modulo operator.

../_images/mod-py.png

Figure 2: Long division showing the whole number result and the remainder ¶

In the example below, try to guess what it will print out and then run it to see if you are right.

The result of x % y when x is smaller than y is always x . The value y can’t go into x at all (goes in 0 times), since x is smaller than y , so the result is just x . So if you see 2 % 3 the result is 2 .

1-4-21: What is the result of 158 % 10?

  • This would be the result of 158 divided by 10. modulo gives you the remainder.
  • modulo gives you the remainder after the division.
  • When you divide 158 by 10 you get a remainder of 8.

1-4-22: What is the result of 3 % 8?

  • 8 goes into 3 no times so the remainder is 3. The remainder of a smaller number divided by a larger number is always the smaller number!
  • This would be the remainder if the question was 8 % 3 but here we are asking for the reminder after we divide 3 by 8.
  • What is the remainder after you divide 3 by 8?

1.4.5. FlowCharting ¶

Assume you have 16 pieces of pizza and 5 people. If everyone gets the same number of slices, how many slices does each person get? Are there any leftover pieces?

In industry, a flowchart is used to describe a process through symbols and text. A flowchart usually does not show variable declarations, but it can show assignment statements (drawn as rectangle) and output statements (drawn as rhomboid).

The flowchart in figure 3 shows a process to compute the fair distribution of pizza slices among a number of people. The process relies on integer division to determine slices per person, and the mod operator to determine remaining slices.

Flow Chart

Figure 3: Example Flow Chart ¶

A flowchart shows pseudo-code, which is like Java but not exactly the same. Syntactic details like semi-colons are omitted, and input and output is described in abstract terms.

Complete the program based on the process shown in the Figure 3 flowchart. Note the first line of code declares all 4 variables as type int. Add assignment statements and print statements to compute and print the slices per person and leftover slices. Use System.out.println for output.

1.4.6. Storing User Input in Variables ¶

Variables are a powerful abstraction in programming because the same algorithm can be used with different input values saved in variables.

Program input and output

Figure 4: Program input and output ¶

A Java program can ask the user to type in one or more values. The Java class Scanner is used to read from the keyboard input stream, which is referenced by System.in . Normally the keyboard input is typed into a console window, but since this is running in a browser you will type in a small textbox window displayed below the code. The code below shows an example of prompting the user to enter a name and then printing a greeting. The code String name = scan.nextLine() gets the string value you enter as program input and then stores the value in a variable.

Run the program a few times, typing in a different name. The code works for any name: behold, the power of variables!

Run this program to read in a name from the input stream. You can type a different name in the input window shown below the code.

Try stepping through the code with the CodeLens tool to see how the name variable is assigned to the value read by the scanner. You will have to click “Hide CodeLens” and then “Show in CodeLens” to enter a different name for input.

The Scanner class has several useful methods for reading user input. A token is a sequence of characters separated by white space.

Method

Description

nextLine()

Scans all input up to the line break as a String

next()

Scans the next token of the input as a String

nextInt()

Scans the next token of the input as an int

nextDouble()

Scans the next token of the input as a double

nextBoolean()

Scans the next token of the input as a boolean

Run this program to read in an integer from the input stream. You can type a different integer value in the input window shown below the code.

A rhomboid (slanted rectangle) is used in a flowchart to depict data flowing into and out of a program. The previous flowchart in Figure 3 used a rhomboid to indicate program output. A rhomboid is also used to denote reading a value from the input stream.

Flow Chart

Figure 5: Flow Chart Reading User Input ¶

Figure 5 contains an updated version of the pizza calculator process. The first two steps have been altered to initialize the pizzaSlices and numPeople variables by reading two values from the input stream. In Java this will be done using a Scanner object and reading from System.in.

Complete the program based on the process shown in the Figure 5 flowchart. The program should scan two integer values to initialize pizzaSlices and numPeople. Run the program a few times to experiment with different values for input. What happens if you enter 0 for the number of people? The program will bomb due to division by zero! We will see how to prevent this in a later lesson.

The program below reads two integer values from the input stream and attempts to print the sum. Unfortunately there is a problem with the last line of code that prints the sum.

Run the program and look at the result. When the input is 5 and 7 , the output is Sum is 57 . Both of the + operators in the print statement are performing string concatenation. While the first + operator should perform string concatenation, the second + operator should perform addition. You can force the second + operator to perform addition by putting the arithmetic expression in parentheses ( num1 + num2 ) .

More information on using the Scanner class can be found here https://www.w3schools.com/java/java_user_input.asp

1.4.7. Programming Challenge : Dog Years ¶

In this programming challenge, you will calculate your age, and your pet’s age from your birthdates, and your pet’s age in dog years. In the code below, type in the current year, the year you were born, the year your dog or cat was born (if you don’t have one, make one up!) in the variables below. Then write formulas in assignment statements to calculate how old you are, how old your dog or cat is, and how old they are in dog years which is 7 times a human year. Finally, print it all out.

Calculate your age and your pet’s age from the birthdates, and then your pet’s age in dog years. If you want an extra challenge, try reading the values using a Scanner.

1.4.8. Summary ¶

Arithmetic expressions include expressions of type int and double.

The arithmetic operators consist of +, -, * , /, and % (modulo for the remainder in division).

An arithmetic operation that uses two int values will evaluate to an int value. With integer division, any decimal part in the result will be thrown away, essentially rounding down the answer to a whole number.

An arithmetic operation that uses at least one double value will evaluate to a double value.

Operators can be used to construct compound expressions.

During evaluation, operands are associated with operators according to operator precedence to determine how they are grouped. (*, /, % have precedence over + and -, unless parentheses are used to group those.)

An attempt to divide an integer by zero will result in an ArithmeticException to occur.

The assignment operator (=) allows a program to initialize or change the value stored in a variable. The value of the expression on the right is stored in the variable on the left.

During execution, expressions are evaluated to produce a single value.

The value of an expression has a type based on the evaluation of the expression.

Assignment Statements

The last thing we discussed in the previous unit were variables. We use variables to store values of an evaluated expression. To store this value, we use an assignment statement . A simple assignment statement consists of a variable name, an equal sign ( assignment operator ) and the value to be stored.

a in the above expression is assigned the value 7.

Here we see that the variable a has 2 added to it's previous value. The resulting number is 9, the addition of 7 and 2.

To break it down into easy steps:

  • a = 7 -> Variable is initialized when we store a value in it
  • a = a + 2 -> Variable is assigned a new value and forgets the old value

This is called overwriting the variable. a 's value was overwritten in the process. The expression on the right of the = operator is evaluated down to a single value before it is assigned to the variable on the left. During the evaluation stage, a still carries the number 7 , this is added by 2 which results in 9 . 9 is then assigned to the variable a and overwrites the previous value.

Another example:

Hence, when a new value is assigned to a variable, the old one is forgotten.

Variable Names

There are three rules for variable names:

  • It can be only one word, no spaces are allowed.
  • It can use only letters, numbers, and the underscore (_) character.
  • It can’t begin with a number.
Valid variable names Invalid variable names
balance savings-balance (hyphens are not allowed)
savingsBalance savings balance (spaces are not allowed)
savings_balance 2balance (can't begin with a number)
_hello 35 (can't begin with a number)
HELLO hell$$0 (special characters like $ are not allowed)
hello5 'hello' (special characters like ' are not allowed)
Note: Variable names are case-sensitive. This means that hello, Hello, hellO are three different variables. The python convention is to start a variable name with lowercase characters. Tip: A good variable name describes the data it contains. Imagine you have a cat namely Kitty. You could say cat = 'Kitty' .

What would this output: 'name' + 'namename' ? a. 'name' b. 'namenamename' c. 'namename' d. namenamename

What would this output: 'name' * 3 a. 'name' b. 'namenamename' c. 'namename' d. namenamename

results matching " "

No results matching " ".

DEV Community

DEV Community

Paul Ngugi

Posted on Apr 24

Assignment Statements and Assignment Expressions

An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java. After a variable is declared, you can assign a value to it by using an assignment statement . In Java, the equal sign ( = ) is used as the assignment operator. The syntax for assignment statements is as follows:

An expression represents a computation involving values, variables, and operators that, taking them together, evaluates to a value. For example, consider the following code:

You can use a variable in an expression. A variable can also be used in both sides of the = operator. For example,

In this assignment statement, the result of x + 1 is assigned to x . If x is 1 before the statement is executed, then it becomes 2 after the statement is executed. To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus, the following statement is wrong:

In mathematics, x = 2 * x + 1 denotes an equation. However, in Java, x = 2 * x + 1 is an assignment statement that evaluates the expression 2 * x + 1 and assigns the result to x .

In Java, an assignment statement is essentially an expression that evaluates to the value to be assigned to the variable on the left side of the assignment operator. For this reason, an assignment statement is also known as an assignment expression . For example, the following statement is correct:

which is equivalent to

If a value is assigned to multiple variables, you can use this syntax:

In an assignment statement, the data type of the variable on the left must be compatible with the data type of the value on the right. For example, int x = 1.0 would be illegal, because the data type of x is int . You cannot assign a double value ( 1.0 ) to an int variable without using type casting.

Top comments (0)

pic

Templates let you quickly answer FAQs or store snippets for re-use.

Are you sure you want to hide this comment? It will become hidden in your post, but will still be visible via the comment's permalink .

Hide child comments as well

For further actions, you may consider blocking this person and/or reporting abuse

dharamgfx profile image

⚔️ JavaScript vs. TypeScript: The Language Showdown! 🤯

Dharmendra Kumar - Aug 29

m__mdy__m profile image

A book about arrays

mahdi - Aug 29

jigar_online profile image

Power Up Your Projects: The Essential Generative AI Tech Stack for Developers

Jigar Shah - Aug 28

myexamcloud profile image

Java Programming changes from Java SE 1.0 to Java SE 23

MyExamCloud - Sep 1

DEV Community

We're a place where coders share, stay up-to-date and grow their careers.

  • Contributors

Basic Statements in Python

Table of contents, what is a statement in python, statement set, multi-line statements, simple statements, expression statements, the assert statement, the try statement.

Statements in Python

In Python, statements are instructions or commands that you write to perform specific actions or tasks. They are the building blocks of a Python program.

A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter.

Assignment Statement

In this example, the value 10 is assigned to the variable x using the assignment statement.

Conditional Statement

In this example, the if-else statement is used to check the value of x and print a corresponding message.

By using statements, programmers can instruct the computer to perform a variety of tasks, from simple arithmetic operations to complex decision-making processes. Proper use of statements is crucial to writing efficient and effective Python code.

Here's a table summarizing various types of statements in Python:

Statement Description
Multi-Line Statements Statements spanning multiple lines using line continuation or braces.
Compound Statements Statements that contain other statements (e.g., , while, for).
Simple Statements Basic standalone statements that perform a single action.
Expression Statements Statements that evaluate and produce a value.
Statement A placeholder statement that does nothing.
Statement Used to delete references to objects.
Statement Terminates a function and returns a value (optional).
Statement Imports modules or specific objects from modules.
and Statements Control flow statements used in loops ( skips to the next iteration, exits the loop).

Please note that this table provides a brief overview of each statement type, and there may be additional details and variations for each statement.

Multi-line statements are a convenient way to write long code in Python without making it cluttered. They allow you to write several lines of code as a single statement, making it easier for developers to read and understand the code. Here are two examples of multi-line statements in Python:

  • Using backslash:
  • Using parentheses:

Simple statements are the smallest unit of execution in Python programming language and they do not contain any logical or conditional expressions. They are usually composed of a single line of code and can perform basic operations such as assigning values to variables , printing out values, or calling functions .

Examples of simple statements in Python:

Simple statements are essential to programming in Python and are often used in combination with more complex statements to create robust programs and applications.

Expression statements in Python are lines of code that evaluate and produce a value. They are used to assign values to variables, call functions, and perform other operations that produce a result.

In this example, we assign the value 5 to the variable x , then add 3 to x and assign the result ( 8 ) to the variable y . Finally, we print the value of y .

In this example, we define a function square that takes one argument ( x ) and returns its square. We then call the function with the argument 5 and assign the result ( 25 ) to the variable result . Finally, we print the value of result .

Overall, expression statements are an essential part of Python programming and allow for the execution of mathematical and computational operations.

The assert statement in Python is used to test conditions and trigger an error if the condition is not met. It is often used for debugging and testing purposes.

Where condition is the expression that is tested, and message is the optional error message that is displayed when the condition is not met.

In this example, the assert statement tests whether x is equal to 5 . If the condition is met, the statement has no effect. If the condition is not met, an error will be raised with the message x should be 5 .

In this example, the assert statement tests whether y is not equal to 0 before performing the division. If the condition is met, the division proceeds as normal. If the condition is not met, an error will be raised with the message Cannot divide by zero .

Overall, assert statements are a useful tool in Python for debugging and testing, as they can help catch errors early on. They are also easily disabled in production code to avoid any unnecessary overhead.

The try statement in Python is used to catch exceptions that may occur during the execution of a block of code. It ensures that even when an error occurs, the code does not stop running.

Examples of Error Processing

Dive deep into the topic.

  • Match Statements
  • Operators in Python Statements
  • The IF Statement

Contribute with us!

Do not hesitate to contribute to Python tutorials on GitHub: create a fork, update content and issue a pull request.

Profile picture for user AliaksandrSumich

Python Programming

Python Statements

Updated on:  September 1, 2021 | 21 Comments

In this tutorial, you will learn Python statements. Also, you will learn simple statements and compound statements.

Table of contents

Multi-line statements, python compound statements, expression statements, the pass statement.

  • The del statement
  • The return statement
  • The import statement
  • The continue and break statement

What is a statement in Python?

A statement is an instruction that a Python interpreter can execute . So, in simple words, we can say anything written in Python is a statement.

Python statement ends with the token NEWLINE character. It means each line in a Python script is a statement.

For example, a = 10 is an assignment statement. where a is a variable name and 10 is its value. There are other kinds of statements such as if statement, for statement, while statement, etc., we will learn them in the following lessons.

There are mainly four types of statements in Python, print statements, Assignment statements, Conditional statements , Looping statements .

The print and assignment statements are commonly used. The result of a print statement is a value. Assignment statements don’t produce a result it just assigns a value to the operand on its left side.

A Python script usually contains a sequence of statements. If there is more than one statement, the result appears only one time when all statements execute.

As you can see, we have used three statements in our program. Also, we have added the comments in our code. In Python, we use the hash ( # ) symbol to start writing a comment. In Python, comments describe what code is doing so other people can understand it.

We can add multiple statements on a single line separated by semicolons, as follows:

Python statement ends with the token NEWLINE character. But we can extend the statement over multiple lines using line continuation character ( \ ). This is known as an explicit continuation.

Implicit continuation :

We can use parentheses () to write a multi-line statement. We can add a line continuation statement inside it. Whatever we add inside a parentheses () will treat as a single statement even it is placed on multiple lines.

As you see, we have removed the the line continuation character ( \ ) if we are using the parentheses () .

We can use square brackets [] to create a list . Then, if required, we can place each list item on a single line for better readability.

Same as square brackets, we can use the curly { } to create a dictionary with every key-value pair on a new line for better readability.

Compound statements contain (groups of) other statements; they affect or control the execution of those other statements in some way.

The compound statement includes the conditional and loop statement.

  • if statement: It is a control flow statement that will execute statements under it if the condition is true. Also kown as a conditional statement.
  • while statements: The while loop statement repeatedly executes a code block while a particular condition is true. Also known as a looping statement.
  • for statement: Using for loop statement, we can iterate any sequence or iterable variable. The sequence can be string, list, dictionary, set, or tuple. Also known as a looping statement.
  • try statement: specifies exception handlers .
  • with statement: Used to cleanup code for a group of statements, while the with statement allows the execution of initialization and finalization code around a block of code.

Simple Statements

Apart from the declaration and calculation statements, Python has various simple statements for a specific purpose. Let’s see them one by one.

If you are an absolute beginner, you can move to the other beginner tutorials and then come back to this section.

Expression statements are used to compute and write a value. An expression statement evaluates the expression list and calculates the value.

To understand this, you need to understand an expression is in Python.

An expression is a combination of values, variables , and operators . A single value all by itself is considered an expression. Following are all legal expressions (assuming that the variable x has been assigned a value):

If your type the expression in an interactive python shell, you will get the result.

So here x + 20 is the expression statement which computes the final value if we assume variable x has been assigned a value (10). So final value of the expression will become 30.

But in a script, an expression all by itself doesn’t do anything! So we mostly assign an expression to a variable, which becomes a statement for an interpreter to execute.

pass is a null operation. Nothing happens when it executes. It is useful as a placeholder when a statement is required syntactically, but no code needs to be executed.

For example, you created a function for future releases, so you don’t want to write a code now. In such cases, we can use a pass statement.

The  del  statement

The Python del statement is used to delete objects/variables.

The target_list contains the variable to delete separated by a comma. Once the variable is deleted, we can’t access it.

The  return  statement

We create a function in Python to perform a specific task. The function can return a value that is nothing but an output of function execution.

Using a return statement, we can return a value from a function when called.

The  import  statement

The import statement is used to import modules . We can also import individual classes from a module.

Python has a huge list of built-in modules which we can use in our code. For example, we can use the built-in module DateTime to work with date and time.

Example : Import datetime module

The continue and break statement

  • break Statement: The break statement is used inside the loop to exit out of the loop.
  • continue Statement: The continue statement skip the current iteration and move to the next iteration.

We use break, continue statements to alter the loop’s execution in a certain manner.

Read More : Break and Continue in Python

Did you find this page helpful? Let others know about it. Sharing helps me continue to create free Python resources.

About Vishal

assignment statement is executed

I’m  Vishal Hule , the Founder of PYnative.com. As a Python developer, I enjoy assisting students, developers, and learners. Follow me on  Twitter .

Related Tutorial Topics:

Python exercises and quizzes.

Free coding exercises and quizzes cover Python basics, data structure, data analytics, and more.

  • 15+ Topic-specific Exercises and Quizzes
  • Each Exercise contains 10 questions
  • Each Quiz contains 12-15 MCQ

Loading comments... Please wait.

About PYnative

PYnative.com is for Python lovers. Here, You can get Tutorials, Exercises, and Quizzes to practice and improve your Python skills .

Explore Python

  • Learn Python
  • Python Basics
  • Python Databases
  • Python Exercises
  • Python Quizzes
  • Online Python Code Editor
  • Python Tricks

To get New Python Tutorials, Exercises, and Quizzes

Legal Stuff

We use cookies to improve your experience. While using PYnative, you agree to have read and accepted our Terms Of Use , Cookie Policy , and Privacy Policy .

Copyright © 2018–2024 pynative.com

clear sunny desert yellow sand with celestial snow bridge

1.7 Java | Assignment Statements & Expressions

An assignment statement designates a value for a variable. An assignment statement can be used as an expression in Java.

After a variable is declared, you can assign a value to it by using an assignment statement . In Java, the equal sign = is used as the assignment operator . The syntax for assignment statements is as follows:

An expression represents a computation involving values, variables, and operators that, when taking them together, evaluates to a value. For example, consider the following code:

You can use a variable in an expression. A variable can also be used on both sides of the =  operator. For example:

In the above assignment statement, the result of x + 1  is assigned to the variable x . Let’s say that x is 1 before the statement is executed, and so becomes 2 after the statement execution.

To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus the following statement is wrong:

Note that the math equation  x = 2 * x + 1  ≠ the Java expression x = 2 * x + 1

Java Assignment Statement vs Assignment Expression

Which is equivalent to:

And this statement

is equivalent to:

Note: The data type of a variable on the left must be compatible with the data type of a value on the right. For example, int x = 1.0 would be illegal, because the data type of x is int (integer) and does not accept the double value 1.0 without Type Casting .

◄◄◄BACK | NEXT►►►

What's Your Opinion? Cancel reply

Enhance your Brain

Subscribe to Receive Free Bio Hacking, Nootropic, and Health Information

HTML for Simple Website Customization My Personal Web Customization Personal Insights

DISCLAIMER | Sitemap | ◘

SponserImageUCD

HTML for Simple Website Customization My Personal Web Customization Personal Insights SEO Checklist Publishing Checklist My Tools

Top Posts & Pages

1. VbScript | Message Box


JavaHyperText and Data Structures
  • Java HyperText
  • Style Guide
  • 0. Create project
  • 1. Show line numbers
  • 2. Import preferences for automatic formatting
  • 3. Reset layout
  • 4. Syntax help
  • 5. Open 2 files
  • 6. ToDO comments
  • 7. JUnit testing
  • 8. Assert statement
  • 9. Generating javadoc
  • 10. Red square: terminating programs
  • 11. Remove/add imports
  • 12. Use UTF-8 character encoding
  • 1. API documentation
  • 3. Using Strings
  • Introduction
  • 1. Assignment statement
  • 2. New-expression
  • 3. Method calls
  • 2. Try-statement
  • 1. Output of thrown exceptions
  • 2. Throwable objects
  • 3. Try-stmt/propagation
  • 4. Throw-statement
  • 5. Throws-clause
  • Abstract classes interfaces
  • Iterator & Iterable
  • Program correctness
  • 1. Introduction
  • 2. Developing loops
  • 3. Finding an invariant
  • Stepwise refinement
  • Intro to recursion
  • Recursion on linked lists
  • Recursion on trees
  • Backtracking
  • Shortest path

1. How to execute the assignment statement

1. explaining how to execute the assignment statement.

assignment statement is executed

2. Homework assignment HW1

The first question is easy ---you can copy from the first video or its transcript on the pdf file. Questions 2 and 3 ask about the if-statement and if-else statement. These are the same as in just about any programming language, except for the syntax, of course. So use your knowledge of these statements in whatever programming language you know.

1. Write the algorithm for executing the Java assignment statement <variable>= <expression>; 2. Write the algorithm for executing the Java if-statement               if (<boolean-expression>) <statement 1> 3. Write the algorithm for executing the Java if-else-statement               if (<boolean-expression>) <statement 1> else <statement 2> 4. Tell us in a few words what you thought of the videos on presenting algorithms in English and executing the assignment statement, their message, and the homework.
  • Python Course
  • Python Basics
  • Interview Questions
  • Python Quiz
  • Popular Packages
  • Python Projects
  • Practice Python
  • AI With Python
  • Learn Python3
  • Python Automation
  • Python Web Dev
  • DSA with Python
  • Python OOPs
  • Dictionaries

Different Forms of Assignment Statements in Python

We use Python assignment statements to assign objects to names. The target of an assignment statement is written on the left side of the equal sign (=), and the object on the right can be an arbitrary expression that computes an object.

There are some important properties of assignment in Python :-

  • Assignment creates object references instead of copying the objects.
  • Python creates a variable name the first time when they are assigned a value.
  • Names must be assigned before being referenced.
  • There are some operations that perform assignments implicitly.

Assignment statement forms :-

1. Basic form:

This form is the most common form.

2. Tuple assignment:

    

When we code a tuple on the left side of the =, Python pairs objects on the right side with targets on the left by position and assigns them from left to right. Therefore, the values of x and y are 50 and 100 respectively.

3. List assignment:

This works in the same way as the tuple assignment.

 

4. Sequence assignment:

In recent version of Python, tuple and list assignment have been generalized into instances of what we now call sequence assignment – any sequence of names can be assigned to any sequence of values, and Python assigns the items one at a time by position.

 

5. Extended Sequence unpacking:

It allows us to be more flexible in how we select portions of a sequence to assign.

Here, p is matched with the first character in the string on the right and q with the rest. The starred name (*q) is assigned a list, which collects all items in the sequence not assigned to other names.

This is especially handy for a common coding pattern such as splitting a sequence and accessing its front and rest part.

 

6. Multiple- target assignment:

 

In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left.

7. Augmented assignment :

The augmented assignment is a shorthand assignment that combines an expression and an assignment.

      

There are several other augmented assignment forms:

Please Login to comment...

Similar reads.

  • Python Programs
  • python-basics
  • Top 10 Fun ESL Games and Activities for Teaching Kids English Abroad in 2024
  • Top Free Voice Changers for Multiplayer Games and Chat in 2024
  • Best Monitors for MacBook Pro and MacBook Air in 2024
  • 10 Best Laptop Brands in 2024
  • System Design Netflix | A Complete Architecture

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

  • Stack Overflow for Teams Where developers & technologists share private knowledge with coworkers
  • Advertising & Talent Reach devs & technologists worldwide about your product, service or employer brand
  • OverflowAI GenAI features for Teams
  • OverflowAPI Train & fine-tune LLMs
  • Labs The future of collective knowledge sharing
  • About the company Visit the blog

Collectives™ on Stack Overflow

Find centralized, trusted content and collaborate around the technologies you use most.

Q&A for work

Connect and share knowledge within a single location that is structured and easy to search.

Get early access and see previews of new features.

Can you put "assign" statements within always@ or begin/end statements?

Is this allowed?

  • system-verilog

toolic's user avatar

  • 1 Here is a test proving it works: EDA Playground –  Victor L Commented Aug 1, 2013 at 17:06

7 Answers 7

You can, it's called a "Procedural Continuous Assignment". It overrides ordinary procedural assignments, there doesn't seem to be a call for them in the code you've posted. I'm not sure if they're synthesisable, but I never have cause to use them anyway.

A note on your code - you're missing y from your sensitivity list: eg always @( w or y ) or always @(*) is safer.

Marty's user avatar

  • 4 Procedural continuous assignments have been deprecated as part of SystemVerilog. They just aren't a good idea as they aren't synthesizable and they can make a mess out of simulations. –  Steve K Commented Dec 10, 2009 at 10:15

Building upon Marty's answer, you should read section 9.3 of the IEEE Verilog Standard (1364-2005, for example), where it describes "Procedural Continuous Assignment". The spec allows for assign statements within an always block. However, from my experience, it is quite rare.

Another issue with your code is that it has compile errors with two different simulators that I tried. Both generate error messages that bit-selects or part-selects cannot be used on the left hand side of the assignment.

Another possible solution is to get rid of the always block, and just use simple continuous assignments.

The procedural continuous assign statement was intended to be an optimized way of writing a mux-like behavior. For example, if you have

You could write this as

But people don't like having to deal with sensitivity lists, so @(*) was added to Verilog, and SystemVerilog added always_comb .

But the real killer for this construct is that many people would write code like

Which simulates fine, but you now have a double penalty in performance because the assign statement is already sensitive to changes in A, but so is the always block. This repeatedly executes the procedural assign statement replacing the same RHS.

dave_59's user avatar

Assign is a continuous assignment statement which is used with wires in Verilog. assign statements don't go inside procedural blocks such as always. Registers can be given values in an always block.

Assign statements can be viewed as:

statements for wires.

Jay89's user avatar

  • Thinking from the circuit level: this always(w) begin ..... end , so every code inside it will be activated whenever w is changed ie it falls or raise .
  • assign statement requires pin/port which it assign to some wire or reg output
  • its a complete combinational circuit I am unable to see how the same will only activate at w, that is who/what circuit will make it to only change when w either rises or fall
  • anyway you cant assign a reg output to some wire/reg output using assign statement because as I said it requires you to put pin/port to be assigned only
  • anyway if you go for basic verilog and not so called "Procedural Continuous Assignment" i guess its weird to use the same .

Aaron Hall's user avatar

Yes, but you don't want to. Since x[] doesn't depend on x[] the order doesn't matter. Just use <= instead of assign =.

Brian Carlton's user avatar

There is no need using assign inside a procedural block (In this case Always)

Assign is a continuous assignment, and it has to go outside a procedural block.

DOS's user avatar

Your Answer

Reminder: Answers generated by artificial intelligence tools are not allowed on Stack Overflow. Learn more

Sign up or log in

Post as a guest.

Required, but never shown

By clicking “Post Your Answer”, you agree to our terms of service and acknowledge you have read our privacy policy .

Not the answer you're looking for? Browse other questions tagged verilog system-verilog or ask your own question .

  • The Overflow Blog
  • The hidden cost of speed
  • The creator of Jenkins discusses CI/CD and balancing business with open source
  • Featured on Meta
  • Announcing a change to the data-dump process
  • Bringing clarity to status tag usage on meta sites
  • What does a new user need in a homepage experience on Stack Overflow?
  • Feedback requested: How do you use tag hover descriptions for curating and do...
  • Staging Ground Reviewer Motivation

Hot Network Questions

  • What does "dare not" mean in a literary context?
  • Deleting all files but some on Mac in Terminal
  • Why would autopilot be prohibited below 1000 AGL?
  • What's "the archetypal book" called?
  • Maximisation of product
  • I'm a little embarrassed by the research of one of my recommenders
  • If a Palestinian converts to Judaism, can they get Israeli citizenship?
  • Why is notation in logic so different from algebra?
  • Convert 8 Bit brainfuck to 1 bit Brainfuck / Boolfuck
  • What's the benefit or drawback of being Small?
  • Stained passport am I screwed
  • Can Christian Saudi Nationals visit Mecca?
  • Problem about ratio between circumradius and inradius
  • In which town of Europe (Germany ?) were this 2 photos taken during WWII?
  • Is it a good idea to perform I2C Communication in the ISR?
  • What other marketable uses are there for Starship if Mars colonization falls through?
  • Can I Use A Server In International Waters To Provide Illegal Content Without Getting Arrested?
  • Light switch that is flush or recessed (next to fridge door)
  • Using rule-based symbology for overlapping layers in QGIS
  • How do I apologize to a lecturer who told me not to ever call him again?
  • How do you tip cash when you don't have proper denomination or no cash at all?
  • Trill with “no turn” in Lilypond
  • How do I safely download and run an older version of software for testing without interfering with the currently installed version?
  • What's the difference? lie down vs lie

assignment statement is executed

43.5. Basic Statements
  Chapter 43. PL/pgSQL — Procedural Language  

43.5. Basic Statements #

In this section and the following ones, we describe all the statement types that are explicitly understood by PL/pgSQL . Anything not recognized as one of these statement types is presumed to be an SQL command and is sent to the main database engine to execute, as described in Section 43.5.2 .

43.5.1. Assignment #

An assignment of a value to a PL/pgSQL variable is written as:

As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT command sent to the main database engine. The expression must yield a single value (possibly a row value, if the variable is a row or record variable). The target variable can be a simple variable (optionally qualified with a block name), a field of a row or record target, or an element or slice of an array target. Equal ( = ) can be used instead of PL/SQL-compliant := .

If the expression's result data type doesn't match the variable's data type, the value will be coerced as though by an assignment cast (see Section 10.4 ). If no assignment cast is known for the pair of data types involved, the PL/pgSQL interpreter will attempt to convert the result value textually, that is by applying the result type's output function followed by the variable type's input function. Note that this could result in run-time errors generated by the input function, if the string form of the result value is not acceptable to the input function.

43.5.2. Executing SQL Commands #

In general, any SQL command that does not return rows can be executed within a PL/pgSQL function just by writing the command. For example, you could create and fill a table by writing

If the command does return rows (for example SELECT , or INSERT / UPDATE / DELETE with RETURNING ), there are two ways to proceed. When the command will return at most one row, or you only care about the first row of output, write the command as usual but add an INTO clause to capture the output, as described in Section 43.5.3 . To process all of the output rows, write the command as the data source for a FOR loop, as described in Section 43.6.6 .

Usually it is not sufficient just to execute statically-defined SQL commands. Typically you'll want a command to use varying data values, or even to vary in more fundamental ways such as by using different table names at different times. Again, there are two ways to proceed depending on the situation.

PL/pgSQL variable values can be automatically inserted into optimizable SQL commands, which are SELECT , INSERT , UPDATE , DELETE , MERGE , and certain utility commands that incorporate one of these, such as EXPLAIN and CREATE TABLE ... AS SELECT . In these commands, any PL/pgSQL variable name appearing in the command text is replaced by a query parameter, and then the current value of the variable is provided as the parameter value at run time. This is exactly like the processing described earlier for expressions; for details see Section 43.11.1 .

When executing an optimizable SQL command in this way, PL/pgSQL may cache and re-use the execution plan for the command, as discussed in Section 43.11.2 .

Non-optimizable SQL commands (also called utility commands) are not capable of accepting query parameters. So automatic substitution of PL/pgSQL variables does not work in such commands. To include non-constant text in a utility command executed from PL/pgSQL , you must build the utility command as a string and then EXECUTE it, as discussed in Section 43.5.4 .

EXECUTE must also be used if you want to modify the command in some other way than supplying a data value, for example by changing a table name.

Sometimes it is useful to evaluate an expression or SELECT query but discard the result, for example when calling a function that has side-effects but no useful result value. To do this in PL/pgSQL , use the PERFORM statement:

This executes query and discards the result. Write the query the same way you would write an SQL SELECT command, but replace the initial keyword SELECT with PERFORM . For WITH queries, use PERFORM and then place the query in parentheses. (In this case, the query can only return one row.) PL/pgSQL variables will be substituted into the query just as described above, and the plan is cached in the same way. Also, the special variable FOUND is set to true if the query produced at least one row, or false if it produced no rows (see Section 43.5.5 ).

One might expect that writing SELECT directly would accomplish this result, but at present the only accepted way to do it is PERFORM . An SQL command that can return rows, such as SELECT , will be rejected as an error unless it has an INTO clause as discussed in the next section.

An example:

43.5.3. Executing a Command with a Single-Row Result #

The result of an SQL command yielding a single row (possibly of multiple columns) can be assigned to a record variable, row-type variable, or list of scalar variables. This is done by writing the base SQL command and adding an INTO clause. For example,

where target can be a record variable, a row variable, or a comma-separated list of simple variables and record/row fields. PL/pgSQL variables will be substituted into the rest of the command (that is, everything but the INTO clause) just as described above, and the plan is cached in the same way. This works for SELECT , INSERT / UPDATE / DELETE with RETURNING , and certain utility commands that return row sets, such as EXPLAIN . Except for the INTO clause, the SQL command is the same as it would be written outside PL/pgSQL .

Note that this interpretation of SELECT with INTO is quite different from PostgreSQL 's regular SELECT INTO command, wherein the INTO target is a newly created table. If you want to create a table from a SELECT result inside a PL/pgSQL function, use the syntax CREATE TABLE ... AS SELECT .

If a row variable or a variable list is used as target, the command's result columns must exactly match the structure of the target as to number and data types, or else a run-time error occurs. When a record variable is the target, it automatically configures itself to the row type of the command's result columns.

The INTO clause can appear almost anywhere in the SQL command. Customarily it is written either just before or just after the list of select_expressions in a SELECT command, or at the end of the command for other command types. It is recommended that you follow this convention in case the PL/pgSQL parser becomes stricter in future versions.

If STRICT is not specified in the INTO clause, then target will be set to the first row returned by the command, or to nulls if the command returned no rows. (Note that “ the first row ” is not well-defined unless you've used ORDER BY .) Any result rows after the first row are discarded. You can check the special FOUND variable (see Section 43.5.5 ) to determine whether a row was returned:

If the STRICT option is specified, the command must return exactly one row or a run-time error will be reported, either NO_DATA_FOUND (no rows) or TOO_MANY_ROWS (more than one row). You can use an exception block if you wish to catch the error, for example:

Successful execution of a command with STRICT always sets FOUND to true.

For INSERT / UPDATE / DELETE with RETURNING , PL/pgSQL reports an error for more than one returned row, even when STRICT is not specified. This is because there is no option such as ORDER BY with which to determine which affected row should be returned.

If print_strict_params is enabled for the function, then when an error is thrown because the requirements of STRICT are not met, the DETAIL part of the error message will include information about the parameters passed to the command. You can change the print_strict_params setting for all functions by setting plpgsql.print_strict_params , though only subsequent function compilations will be affected. You can also enable it on a per-function basis by using a compiler option, for example:

On failure, this function might produce an error message such as

The STRICT option matches the behavior of Oracle PL/SQL's SELECT INTO and related statements.

43.5.4. Executing Dynamic Commands #

Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that is, commands that will involve different tables or different data types each time they are executed. PL/pgSQL 's normal attempts to cache plans for commands (as discussed in Section 43.11.2 ) will not work in such scenarios. To handle this sort of problem, the EXECUTE statement is provided:

where command-string is an expression yielding a string (of type text ) containing the command to be executed. The optional target is a record variable, a row variable, or a comma-separated list of simple variables and record/row fields, into which the results of the command will be stored. The optional USING expressions supply values to be inserted into the command.

No substitution of PL/pgSQL variables is done on the computed command string. Any required variable values must be inserted in the command string as it is constructed; or you can use parameters as described below.

Also, there is no plan caching for commands executed via EXECUTE . Instead, the command is always planned each time the statement is run. Thus the command string can be dynamically created within the function to perform actions on different tables and columns.

The INTO clause specifies where the results of an SQL command returning rows should be assigned. If a row variable or variable list is provided, it must exactly match the structure of the command's results; if a record variable is provided, it will configure itself to match the result structure automatically. If multiple rows are returned, only the first will be assigned to the INTO variable(s). If no rows are returned, NULL is assigned to the INTO variable(s). If no INTO clause is specified, the command results are discarded.

If the STRICT option is given, an error is reported unless the command produces exactly one row.

The command string can use parameter values, which are referenced in the command as $1 , $2 , etc. These symbols refer to values supplied in the USING clause. This method is often preferable to inserting data values into the command string as text: it avoids run-time overhead of converting the values to text and back, and it is much less prone to SQL-injection attacks since there is no need for quoting or escaping. An example is:

Note that parameter symbols can only be used for data values — if you want to use dynamically determined table or column names, you must insert them into the command string textually. For example, if the preceding query needed to be done against a dynamically selected table, you could do this:

A cleaner approach is to use format() 's %I specification to insert table or column names with automatic quoting:

(This example relies on the SQL rule that string literals separated by a newline are implicitly concatenated.)

Another restriction on parameter symbols is that they only work in optimizable SQL commands ( SELECT , INSERT , UPDATE , DELETE , MERGE , and certain commands containing one of these). In other statement types (generically called utility statements), you must insert values textually even if they are just data values.

An EXECUTE with a simple constant command string and some USING parameters, as in the first example above, is functionally equivalent to just writing the command directly in PL/pgSQL and allowing replacement of PL/pgSQL variables to happen automatically. The important difference is that EXECUTE will re-plan the command on each execution, generating a plan that is specific to the current parameter values; whereas PL/pgSQL may otherwise create a generic plan and cache it for re-use. In situations where the best plan depends strongly on the parameter values, it can be helpful to use EXECUTE to positively ensure that a generic plan is not selected.

SELECT INTO is not currently supported within EXECUTE ; instead, execute a plain SELECT command and specify INTO as part of the EXECUTE itself.

The PL/pgSQL EXECUTE statement is not related to the EXECUTE SQL statement supported by the PostgreSQL server. The server's EXECUTE statement cannot be used directly within PL/pgSQL functions (and is not needed).

Example 43.1. Quoting Values in Dynamic Queries

When working with dynamic commands you will often have to handle escaping of single quotes. The recommended method for quoting fixed text in your function body is dollar quoting. (If you have legacy code that does not use dollar quoting, please refer to the overview in Section 43.12.1 , which can save you some effort when translating said code to a more reasonable scheme.)

Dynamic values require careful handling since they might contain quote characters. An example using format() (this assumes that you are dollar quoting the function body so quote marks need not be doubled):

It is also possible to call the quoting functions directly:

This example demonstrates the use of the quote_ident and quote_literal functions (see Section 9.4 ). For safety, expressions containing column or table identifiers should be passed through quote_ident before insertion in a dynamic query. Expressions containing values that should be literal strings in the constructed command should be passed through quote_literal . These functions take the appropriate steps to return the input text enclosed in double or single quotes respectively, with any embedded special characters properly escaped.

Because quote_literal is labeled STRICT , it will always return null when called with a null argument. In the above example, if newvalue or keyvalue were null, the entire dynamic query string would become null, leading to an error from EXECUTE . You can avoid this problem by using the quote_nullable function, which works the same as quote_literal except that when called with a null argument it returns the string NULL . For example,

If you are dealing with values that might be null, you should usually use quote_nullable in place of quote_literal .

As always, care must be taken to ensure that null values in a query do not deliver unintended results. For example the WHERE clause

will never succeed if keyvalue is null, because the result of using the equality operator = with a null operand is always null. If you wish null to work like an ordinary key value, you would need to rewrite the above as

(At present, IS NOT DISTINCT FROM is handled much less efficiently than = , so don't do this unless you must. See Section 9.2 for more information on nulls and IS DISTINCT .)

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to write this example as:

because it would break if the contents of newvalue happened to contain $$ . The same objection would apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not known in advance, you must use quote_literal , quote_nullable , or quote_ident , as appropriate.

Dynamic SQL statements can also be safely constructed using the format function (see Section 9.4.1 ). For example:

%I is equivalent to quote_ident , and %L is equivalent to quote_nullable . The format function can be used in conjunction with the USING clause:

This form is better because the variables are handled in their native data type format, rather than unconditionally converting them to text and quoting them via %L . It is also more efficient.

A much larger example of a dynamic command and EXECUTE can be seen in Example 43.10 , which builds and executes a CREATE FUNCTION command to define a new function.

43.5.5. Obtaining the Result Status #

There are several ways to determine the effect of a command. The first method is to use the GET DIAGNOSTICS command, which has the form:

This command allows retrieval of system status indicators. CURRENT is a noise word (but see also GET STACKED DIAGNOSTICS in Section 43.6.8.1 ). Each item is a key word identifying a status value to be assigned to the specified variable (which should be of the right data type to receive it). The currently available status items are shown in Table 43.1 . Colon-equal ( := ) can be used instead of the SQL-standard = token. An example:

Table 43.1. Available Diagnostics Items

Name Type Description
the number of rows processed by the most recent command
line(s) of text describing the current call stack (see )
OID of the current function

The second method to determine the effects of a command is to check the special variable named FOUND , which is of type boolean . FOUND starts out false within each PL/pgSQL function call. It is set by each of the following types of statements:

A SELECT INTO statement sets FOUND true if a row is assigned, false if no row is returned.

A PERFORM statement sets FOUND true if it produces (and discards) one or more rows, false if no row is produced.

UPDATE , INSERT , DELETE , and MERGE statements set FOUND true if at least one row is affected, false if no row is affected.

A FETCH statement sets FOUND true if it returns a row, false if no row is returned.

A MOVE statement sets FOUND true if it successfully repositions the cursor, false otherwise.

A FOR or FOREACH statement sets FOUND true if it iterates one or more times, else false. FOUND is set this way when the loop exits; inside the execution of the loop, FOUND is not modified by the loop statement, although it might be changed by the execution of other statements within the loop body.

RETURN QUERY and RETURN QUERY EXECUTE statements set FOUND true if the query returns at least one row, false if no row is returned.

Other PL/pgSQL statements do not change the state of FOUND . Note in particular that EXECUTE changes the output of GET DIAGNOSTICS , but does not change FOUND .

FOUND is a local variable within each PL/pgSQL function; any changes to it affect only the current function.

43.5.6. Doing Nothing At All #

Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one arm of an if/then/else chain is deliberately empty. For this purpose, use the NULL statement:

For example, the following two fragments of code are equivalent:

Which is preferable is a matter of taste.

In Oracle's PL/SQL, empty statement lists are not allowed, and so NULL statements are required for situations such as this. PL/pgSQL allows you to just write nothing, instead.

   
43.4. Expressions   43.6. Control Structures

Submit correction

If you see anything in the documentation that is not correct, does not match your experience with the particular feature or requires further clarification, please use this form to report a documentation issue.

Navigation Menu

Search code, repositories, users, issues, pull requests..., provide feedback.

We read every piece of feedback, and take your input very seriously.

Saved searches

Use saved searches to filter your results more quickly.

To see all available qualifiers, see our documentation .

  • Notifications You must be signed in to change notification settings

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement . We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Svelte 5: $host() assignment statement will be removed after compilation #13121

@trueadm

CLDXiang commented Sep 4, 2024

If you assign $host() to a variable, the assignment statement will be removed after compilation.

fail(greeting: string) { const element = $host() as HTMLElement; element.dispatchEvent( new CustomEvent('greeting', { detail: greeting }) ); }

Compilation output:

fail(greeting) { element.dispatchEvent(new CustomEvent("greeting", { detail: greeting })); }

is missing.

rogram Files\nodejs\node.EXE npm: 10.2.3 - C:\Program Files\nodejs\npm.CMD pnpm: 9.9.0 - C:\Program Files\nodejs\pnpm.CMD Browsers: Edge: Chromium (127.0.2651.74) Internet Explorer: 11.0.22621.3527 npmPackages: svelte: 5.0.0-next.243 => 5.0.0-next.243

annoyance

@dummdidumm

Successfully merging a pull request may close this issue.

@trueadm

IMAGES

  1. PPT

    assignment statement is executed

  2. 1.4. Expressions and Assignment Statements

    assignment statement is executed

  3. ALG01. Executing the assignment statement

    assignment statement is executed

  4. Assignment and Arithmetic expressions

    assignment statement is executed

  5. PPT

    assignment statement is executed

  6. Assignment Statement

    assignment statement is executed

VIDEO

  1. TRC Episode 34, Part 01

  2. 🙌🏽👏🏽👏🏽💪🏽 She executed the assignment given! #SecondChanceKindaLove

  3. Police Statement on Executed Firearms Warrant on Factory Lane Pembroke, Jan 17 2020

  4. Use Destructuring Assignment to Pass an Object as a Function's Parameters (ES6) freeCodeCamp

  5. ASSIGNMENT WORK? SUBMISSION DATE II WHY IS IMPORTANT FOR US? IGNOU BREAKING

  6. How to Count No Of Times Statement Executed Automatically

COMMENTS

  1. 7. Simple statements

    An assignment statement evaluates the expression list (remember that this can be a single expression or a comma-separated list, the latter yielding a tuple) and assigns the single resulting object to each of the target lists, from left to right. ... and it will be imported in the usual way at the time the future statement is executed.

  2. Python's Assignment Operator: Write Robust Assignments

    To execute an assignment statement like the above, Python runs the following steps: Evaluate the right-hand expression to produce a concrete value or object. This value will live at a specific memory address in your computer. Store the object's memory address in the left-hand variable. This step creates a new variable if the current one doesn ...

  3. What are Assignment Statement: Definition, Assignment Statement ...

    Assignment Statement. An Assignment statement is a statement that is used to set a value to the variable name in a program. Assignment statement allows a variable to hold different types of values during its program lifespan. Another way of understanding an assignment statement is, it stores a value in the memory location which is denoted.

  4. PDF The assignment statement

    The assignment statement 2 The rule for an assignment of an expression that is a number is that the type of the variable has to be at least as wide as the type of the expression. For example, if we have, if we have a byte variable b and an int variable i, both of which contain 0, it is legal to assign b to i but illegal to assign i to b. byte b= 0;

  5. Assignment (computer science)

    Assignment (computer science) In computer programming, an assignment statement sets and/or re-sets the value stored in the storage location (s) denoted by a variable name; in other words, it copies a value into the variable. In most imperative programming languages, the assignment statement (or expression) is a fundamental construct.

  6. 1.4. Expressions and Assignment Statements

    1.4.1. Assignment Statements ¶. Assignment statements initialize or change the value stored in a variable using the assignment operator =. An assignment statement always has a single variable on the left hand side. The value of the expression (which can contain math operators and other variables) on the right of the = sign is stored in the ...

  7. 1.4. Expressions and Assignment Statements

    Assignment statements initialize or change the value stored in a variable using the assignment operator =. An assignment statement always has a single variable on the left hand side of the = sign. The value of the expression on the right hand side of the = sign (which can contain math operators and other variables) is copied into the memory ...

  8. PDF How to execute the assignment statement David Gries

    That's all there is to it! Example execution of an assignment statement. Now suppose we have a variable x. Note that this is Java and not Python, so box x contains the value and not a pointer to the value. To execute the assignment statement. x. int. x= x + 2; evaluate the expression x + 2, resulting in the value 7, and store this value in box x.

  9. Assignment Statements · Pythonium

    To store this value, we use an assignment statement. A simple assignment statement consists of a variable name, an equal sign (assignment operator) and the value to be stored. a in the above expression is assigned the value 7. Here we see that the variable a has 2 added to it's previous value. The resulting number is 9, the addition of 7 and 2.

  10. Assignment Statements and Assignment Expressions

    In this assignment statement, the result of x + 1 is assigned to x. If x is 1 before the statement is executed, then it becomes 2 after the statement is executed. To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus, the following statement is wrong:

  11. Introduction into Python Statements: Assignment, Conditional Examples

    What is a Statement in Python? A statement is a line of code that performs a specific action. It is the smallest unit of code that can be executed by the Python interpreter. Assignment Statement x = 10 In this example, the value 10 is assigned to the variable x using the assignment statement. Conditional Statement

  12. PDF The Assignment Statement

    The Assignment Statement Use To assign a value to a variable. Another way to think about this is that you are storing a value in a particular memory location, and the name of the variable, or its identifier, is a human-friendly way of indicating which location in memory. When you specify the name,

  13. PDF 1. The Assignment Statement and Types

    The Key 2-Step Action Behind Every Assignment Statement. < variable name > = < expression >. Evaluate the expression on the right hand side. Store the result in the variable named on the left hand side. >> radius = 10. >> Area = 3.14*radius**2. radius -> 10.

  14. Python Statements With Examples- PYnative

    Assignment statements don't produce a result it just assigns a value to the operand on its left side. A Python script usually contains a sequence of statements. If there is more than one statement, the result appears only one time when all statements execute. ... It is a control flow statement that will execute statements under it if the ...

  15. The Assignment Statement

    The meaning of the first assignment is computing the sum of the value in Counter and 1, and saves it back to Counter. Since Counter 's current value is zero, Counter + 1 is 1+0 = 1 and hence 1 is saved into Counter. Therefore, the new value of Counter becomes 1 and its original value 0 disappears. The second assignment statement computes the ...

  16. 1.7 Java

    In the above assignment statement, the result of x + 1 is assigned to the variable x. Let's say that x is 1 before the statement is executed, and so becomes 2 after the statement execution. To assign a value to a variable, you must place the variable name to the left of the assignment operator. Thus the following statement is wrong: 1 = x ...

  17. Assignment expression in C++ for-loop update expression

    1. According to cppreference.com the update expression, or iteration expression, of a for cycle in C++ language can be. any expression, which is executed after every iteration of the loop and before re-evaluating condition. Hence, I thought that the following for cycle was correct: //loop statements. However, the results I obtain at the end of ...

  18. 1. How to execute the assignment statement

    1. Explaining how to execute the assignment statement. In this 2.5-minute video, we emphasize the difference between syntax and semantics once more, show what it means to execute the assignment statement, and finally give an example of execution of an assignment. Read it here: 01presentingAlgorithmsA.pdf . 2. Homework assignment HW1

  19. Different Forms of Assignment Statements in Python

    Multiple- target assignment: x = y = 75. print(x, y) In this form, Python assigns a reference to the same object (the object which is rightmost) to all the target on the left. OUTPUT. 75 75. 7. Augmented assignment : The augmented assignment is a shorthand assignment that combines an expression and an assignment.

  20. Chapter 3 Flashcards

    What value is assigned to x after the following assignment statement is executed? x = -3 + 4 % 6 / 5;-3. When the final value of an expression is assigned to a variable, it will be converted to: ... In the following C++ statement, what will be executed first according to the order of precedence? result = 6 - 3 * 2 + 7 - 10 / 2 ; 3 * 2.

  21. Can you put "assign" statements within always@ or begin/end statements?

    2. Assign is a continuous assignment statement which is used with wires in Verilog. assign statements don't go inside procedural blocks such as always. Registers can be given values in an always block. Assign statements can be viewed as: always @(*) statements for wires. answered Apr 28, 2014 at 9:45.

  22. PostgreSQL: Documentation: 16: 43.5. Basic Statements

    An assignment of a value to a PL/pgSQL variable is written as:. variable { := | = } expression; . As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT command sent to the main database engine. The expression must yield a single value (possibly a row value, if the variable is a row or record variable).

  23. Svelte 5: $host() assignment statement will be removed after ...

    You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session. You switched accounts on another tab or window.