• Get the Job
  • Resumes and CVs
  • Applications
  • Cover Letters
  • Professional References

Professional Licenses and Exams

  • Get a Promotion
  • Negotiation
  • Professional Ethics
  • Professionalism
  • Dealing with Coworkers
  • Dealing with Bosses

Communication Skills

Managing the office, disabilities, harassment and discrimination, unemployment.

  • Career Paths
  • Compare Careers
  • Switching Careers
  • Training and Certifications
  • Start a Company
  • Internships and Apprenticeships
  • Entry Level Jobs
  • College Degrees

Growth Trends for Related Jobs

Advantages and disadvantages of using a single-subject research design.

careertrend article image

Most empirical research relies on using the scientific method to conduct large studies that use many participants in a control group and an experimental group. The purpose is to determine the effect of some experimental factor by introducing it to the experimental group, but not to the control group, and seeing what, if any, effect the experimental factor has. However, in some cases researchers will use an alternative method called single-subject research design.

Single-Subject Methodology

Single Subject Research Designs (SSRDs) work by designing an experiment where, instead of a control group of subjects and an experimental group of subjects whose results are compared to one another, the control and experimental measurements come from a single subject. Researchers measure the metric of interest before introducing the experimental factor for a control measurement, and measure the metric of interest after introducing the experimental factor for the experimental measure. While studies may include more than one subject, each subject is treated as a unique experiment instead of one trial in a larger experiment.

Self-Controlling

An advantage of using an SSRD is that, instead of comparing the percentage of people that responded to an experimental factor to the percentage of people that did not, the study examines how an individual subject, with his own unique characteristics, responds to the experimental factor. This is particularly useful when studying specific subsets of a population, rather than the population as a whole.

Finding Subjects

In an experimental group versus control group study, the researcher has to find a large number of participants to act as subjects. This is necessary for the data from the experiment to yield statistically relevant results. This requires the time and resources to not only gather the participants, but to run trials of the experiment on all the subjects to gather all the data. An SSRD allows researchers to quickly design and run their study without having to find so many participants.

Empirical Value

While the fact that the researcher does not use a large number of participants has its advantages, it also has a downside: Because the experimental trials are run on only one subject, it is difficult to empirically show with the experiment's data that the findings will generalize out to larger populations. All the trial can show is what happened with the individual subject, whereas traditional research designs that use large numbers of participants are specifically designed to show if a result is statistically valid for the general population.

Related Articles

Characteristics of ethnographic research →.

careertrend related article image

Types of Criminal Justice Research & Hypothesis →

Types of observation in a research study →.

careertrend related article image

What Does a Theoretical Physicist Do? →

careertrend related article image

What Types of Paleontologists Are There? →

careertrend related article image

What Makes Psychology a Science? →

careertrend related article image

  • NASP Communiqué; "Using Single-Subject Research in the Practice of School Psychology"; Michelle Marchant et al.; September 2006

Micah McDunnigan has been writing on politics and technology since 2007. He has written technology pieces and political op-eds for a variety of student organizations and blogs. McDunnigan earned a Bachelor of Arts in international relations from the University of California, Davis.

Thanakorn Phanthura / EyeEm/EyeEm/GettyImages

  • Job Descriptions
  • Law Enforcement Job Descriptions
  • Administrative Job Descriptions
  • Healthcare Job Descriptions
  • Sales Job Descriptions
  • Fashion Job Descriptions
  • Education Job Descriptions
  • Salary Insights
  • Journalism Salaries
  • Healthcare Salaries
  • Military Salaries
  • Engineering Salaries
  • Teaching Salaries
  • Accessibility
  • Privacy Notice
  • Cookie Notice
  • Copyright Policy
  • Contact Us
  • Find a Job
  • Manage Preferences
  • California Notice of Collection
  • Terms of Use

Learning Behavior Analysis, LLC

  • Our Mission
  • Section A: Philosophical Underpinnings
  • Section B: Concepts and Principles
  • Section C: Measurement, Data Display, and Interpretation
  • Section D: Experimental Design
  • Section E: Ethics
  • Section F: Behavior Assessment
  • Section G: Behavior Change Procedures
  • Section H: Selecting and Implementing Interventions
  • Section I: Personnel Supervision and Management
  • Section A: Behaviorism and Philosophical Foundations
  • Section E: Ethical and Professional Issues
  • Section G: Behavior-Change Procedures
  • Downloadable Products
  • Grad School Review Study Course
  • School Staff Courses
  • Continuing Education Courses
  • Free Practitioner Resources
  • Misc. Study Resources
  • Section A (Philosophical Underpinnings) Quiz
  • Section B (Concepts and Principles) Quiz
  • Section C (Measurement, Data Display, and Interpretation) Quiz
  • Section D (Experimental Design) Quiz
  • Section F (Behavior Assessment) Quiz
  • Section G (Behavior Change Procedures) Quiz

D-4: Describe the advantages of single subject experimental designs compared to group design ©

Want this as a downloadable pdf click here, want a self-paced video course that covers all the test content and more click here.

Target terms (or phrases, in this case): single subject experimental designs, groups designs

single subject research design advantages and disadvantages

Research is about asking and answering questions. It’s really important that the way we find an answer matches the question that was asked! That’s basically what research methods are all about. It’s probably not helpful or productive to think of group designs and single subject designs as diametrically opposed in any philosophical way. They are two different ways of answering different kinds of research questions. Some people do feel that there are important and foundational divisions between the underlying assumptions of group designs and those of single subject designs. (This can be complex! Focus on learning the basics first.) It’s important to note that “groups design” does not inherently refer to very large numbers of participants, nor does “single subject design” refer to studies that necessarily contain a single participant. The names refer to the level at which the analysis is conducted, not the absolute number of participants involved in the study. That being said, most single case studies do involve fewer participants than group designs.

Groups designs 

Definition: Most people are familiar with research that involves two big groups of people. Researchers do something to group 1, and not group 2, and then they compare how both groups are doing (often by looking at an average of both groups) to see if the treatment made a difference. This is between subject research because the comparison is done (you guessed it) between different research subjects! (There is much more to between groups designs, of course. They are not simple. This is just a very, very basic overview of the main idea.) 

Example in clinical context : Leonardo is in charge of assembling a team to evaluate the effectiveness of different reading programs on students who attend special education programs in major U.S. cities. The goal is to find out which program is most effective, so that the Department of Education can provide more targeted support to special education programs in urban areas. This research question is not about a particular individual. It is about which program is the best, on average, for urban special education students as a whole. This is a question that should be answered by assembling several very large groups of students, assigning them randomly to different programs, then comparing the dependent variables (in this case, reading scores) for each group. This design acknowledges that the results may not capture each individual’s experience. It is about what has the greatest impact on the dependent variable overall. 

Why it matters : Between groups designs are not “bad,” nor do they yield inferior results when compared to within subjects designs. They simply provide answers to different questions, and those answers should be applied in different ways . It is important for behavior analysts to understand the basics of groups designs for several reasons, including the following: (1) most other fields, professionals, and stakeholders are more familiar with groups designs than with single subject methodology, and it is important to speak the same language when collaborating, (2) much of the broader conversation about “evidence based practices” in the helping professions are informed by groups research, and (3) a behavior analyst will probably encounter questions in their career that are best answered by consulting the between groups design literature. 

Single subject experimental designs

Definition: Single subject experimental designs are different in several fundamental ways. The most obvious way is that comparisons are made within each subject. This kind of research design is therefore called within subjects research . The most obvious (and most experimentally weak) way to use an individual as their own control is to take data at baseline, then introduce an intervention and take data, and then compare the two sets of data to see if there is a difference. (See D-5 to explore more sophisticated ways to do this!)

Example in clinical context: DeShawn is in charge of selecting reading programming for special education students within an urban public school in the U.S. He knows that his students have different learning profiles and different learning contexts. DeShawn evaluates the relative benefit of multiple reading interventions at the individual level by conducting a multi-element design, and makes his decision based on how individual students respond to each intervention. 

Why it matters: It is a foundational responsibility of behavior analysts to make decisions based on data and for the benefit of each individual client. Using single case design methodology helps us demonstrate a functional relationship between our intervention and the behavior change the client needs. At this point in human history, nothing can answer client specific questions regarding environmental interventions better than single subject methodologies. Pretty cool, right?  

Click here for a free quiz on Section D content!

Share this:.

Logo for BCcampus Open Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

Chapter 10: Single-Subject Research

Single-Subject Research Designs

Learning Objectives

  • Describe the basic elements of a single-subject research design.
  • Design simple single-subject studies using reversal and multiple-baseline designs.
  • Explain how single-subject research designs address the issue of internal validity.
  • Interpret the results of simple single-subject studies based on the visual inspection of graphed data.

General Features of Single-Subject Designs

Before looking at any specific single-subject research designs, it will be helpful to consider some features that are common to most of them. Many of these features are illustrated in Figure 10.2, which shows the results of a generic single-subject study. First, the dependent variable (represented on the  y -axis of the graph) is measured repeatedly over time (represented by the  x -axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is tested under one condition per phase. The conditions are often designated by capital letters: A, B, C, and so on. Thus Figure 10.2 represents a design in which the participant was tested first in one condition (A), then tested in another condition (B), and finally retested in the original condition (A). (This is called a reversal design and will be discussed in more detail shortly.)

A subject was tested under condition A, then condition B, then under condition A again.

Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant’s behaviour. Specifically, the researcher waits until the participant’s behaviour in one condition becomes fairly consistent from observation to observation before changing conditions. This is sometimes referred to as the steady state strategy  (Sidman, 1960) [1] . The idea is that when the dependent variable has reached a steady state, then any change across conditions will be relatively easy to detect. Recall that we encountered this same principle when discussing experimental research more generally. The effect of an independent variable is easier to detect when the “noise” in the data is minimized.

Reversal Designs

The most basic single-subject research design is the  reversal design , also called the  ABA design . During the first phase, A, a  baseline  is established for the dependent variable. This is the level of responding before any treatment is introduced, and therefore the baseline phase is a kind of control condition. When steady state responding is reached, phase B begins as the researcher introduces the treatment. There may be a period of adjustment to the treatment during which the behaviour of interest becomes more variable and begins to increase or decrease. Again, the researcher waits until that dependent variable reaches a steady state so that it is clear whether and how much it has changed. Finally, the researcher removes the treatment and again waits until the dependent variable reaches a steady state. This basic reversal design can also be extended with the reintroduction of the treatment (ABAB), another return to baseline (ABABA), and so on.

The study by Hall and his colleagues was an ABAB reversal design. Figure 10.3 approximates the data for Robbie. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

A graph showing the results of a study with an ABAB reversal design. Long description available.

Why is the reversal—the removal of the treatment—considered to be necessary in this type of design? Why use an ABA design, for example, rather than a simpler AB design? Notice that an AB design is essentially an interrupted time-series design applied to an individual participant. Recall that one problem with that design is that if the dependent variable changes after the treatment is introduced, it is not always clear that the treatment was responsible for the change. It is possible that something else changed at around the same time and that this extraneous variable is responsible for the change in the dependent variable. But if the dependent variable changes with the introduction of the treatment and then changes  back  with the removal of the treatment (assuming that the treatment does not create a permanent effect), it is much clearer that the treatment (and removal of the treatment) is the cause. In other words, the reversal greatly increases the internal validity of the study.

There are close relatives of the basic reversal design that allow for the evaluation of more than one treatment. In a  multiple-treatment reversal design , a baseline phase is followed by separate phases in which different treatments are introduced. For example, a researcher might establish a baseline of studying behaviour for a disruptive student (A), then introduce a treatment involving positive attention from the teacher (B), and then switch to a treatment involving mild punishment for not studying (C). The participant could then be returned to a baseline phase before reintroducing each treatment—perhaps in the reverse order as a way of controlling for carryover effects. This particular multiple-treatment reversal design could also be referred to as an ABCACB design.

In an  alternating treatments design , two or more treatments are alternated relatively quickly on a regular schedule. For example, positive attention for studying could be used one day and mild punishment for not studying the next, and so on. Or one treatment could be implemented in the morning and another in the afternoon. The alternating treatments design can be a quick and effective way of comparing treatments, but only when the treatments are fast acting.

Multiple-Baseline Designs

There are two potential problems with the reversal design—both of which have to do with the removal of the treatment. One is that if a treatment is working, it may be unethical to remove it. For example, if a treatment seemed to reduce the incidence of self-injury in a developmentally disabled child, it would be unethical to remove that treatment just to show that the incidence of self-injury increases. The second problem is that the dependent variable may not return to baseline when the treatment is removed. For example, when positive attention for studying is removed, a student might continue to study at an increased rate. This could mean that the positive attention had a lasting effect on the student’s studying, which of course would be good. But it could also mean that the positive attention was not really the cause of the increased studying in the first place. Perhaps something else happened at about the same time as the treatment—for example, the student’s parents might have started rewarding him for good grades.

One solution to these problems is to use a  multiple-baseline design , which is represented in Figure 10.4. In one version of the design, a baseline is established for each of several participants, and the treatment is then introduced for each one. In essence, each participant is tested in an AB design. The key to this design is that the treatment is introduced at a different  time  for each participant. The idea is that if the dependent variable changes when the treatment is introduced for one participant, it might be a coincidence. But if the dependent variable changes when the treatment is introduced for multiple participants—especially when the treatment is introduced at different times for the different participants—then it is extremely unlikely to be a coincidence.

Three graphs depicting the results of a multiple-baseline study. Long description available.

As an example, consider a study by Scott Ross and Robert Horner (Ross & Horner, 2009) [2] . They were interested in how a school-wide bullying prevention program affected the bullying behaviour of particular problem students. At each of three different schools, the researchers studied two students who had regularly engaged in bullying. During the baseline phase, they observed the students for 10-minute periods each day during lunch recess and counted the number of aggressive behaviours they exhibited toward their peers. (The researchers used handheld computers to help record the data.) After 2 weeks, they implemented the program at one school. After 2 more weeks, they implemented it at the second school. And after 2 more weeks, they implemented it at the third school. They found that the number of aggressive behaviours exhibited by each student dropped shortly after the program was implemented at his or her school. Notice that if the researchers had only studied one school or if they had introduced the treatment at the same time at all three schools, then it would be unclear whether the reduction in aggressive behaviours was due to the bullying program or something else that happened at about the same time it was introduced (e.g., a holiday, a television program, a change in the weather). But with their multiple-baseline design, this kind of coincidence would have to happen three separate times—a very unlikely occurrence—to explain their results.

In another version of the multiple-baseline design, multiple baselines are established for the same participant but for different dependent variables, and the treatment is introduced at a different time for each dependent variable. Imagine, for example, a study on the effect of setting clear goals on the productivity of an office worker who has two primary tasks: making sales calls and writing reports. Baselines for both tasks could be established. For example, the researcher could measure the number of sales calls made and reports written by the worker each week for several weeks. Then the goal-setting treatment could be introduced for one of these tasks, and at a later time the same treatment could be introduced for the other task. The logic is the same as before. If productivity increases on one task after the treatment is introduced, it is unclear whether the treatment caused the increase. But if productivity increases on both tasks after the treatment is introduced—especially when the treatment is introduced at two different times—then it seems much clearer that the treatment was responsible.

In yet a third version of the multiple-baseline design, multiple baselines are established for the same participant but in different settings. For example, a baseline might be established for the amount of time a child spends reading during his free time at school and during his free time at home. Then a treatment such as positive attention might be introduced first at school and later at home. Again, if the dependent variable changes after the treatment is introduced in each setting, then this gives the researcher confidence that the treatment is, in fact, responsible for the change.

Data Analysis in Single-Subject Research

In addition to its focus on individual participants, single-subject research differs from group research in the way the data are typically analyzed. As we have seen throughout the book, group research involves combining data across participants. Group data are described using statistics such as means, standard deviations, Pearson’s  r , and so on to detect general patterns. Finally, inferential statistics are used to help decide whether the result for the sample is likely to generalize to the population. Single-subject research, by contrast, relies heavily on a very different approach called  visual inspection . This means plotting individual participants’ data as shown throughout this chapter, looking carefully at those data, and making judgments about whether and to what extent the independent variable had an effect on the dependent variable. Inferential statistics are typically not used.

In visually inspecting their data, single-subject researchers take several factors into account. One of them is changes in the  level  of the dependent variable from condition to condition. If the dependent variable is much higher or much lower in one condition than another, this suggests that the treatment had an effect. A second factor is  trend , which refers to gradual increases or decreases in the dependent variable across observations. If the dependent variable begins increasing or decreasing with a change in conditions, then again this suggests that the treatment had an effect. It can be especially telling when a trend changes directions—for example, when an unwanted behaviour is increasing during baseline but then begins to decrease with the introduction of the treatment. A third factor is  latency , which is the time it takes for the dependent variable to begin changing after a change in conditions. In general, if a change in the dependent variable begins shortly after a change in conditions, this suggests that the treatment was responsible.

In the top panel of Figure 10.5, there are fairly obvious changes in the level and trend of the dependent variable from condition to condition. Furthermore, the latencies of these changes are short; the change happens immediately. This pattern of results strongly suggests that the treatment was responsible for the changes in the dependent variable. In the bottom panel of Figure 10.5, however, the changes in level are fairly small. And although there appears to be an increasing trend in the treatment condition, it looks as though it might be a continuation of a trend that had already begun during baseline. This pattern of results strongly suggests that the treatment was not responsible for any changes in the dependent variable—at least not to the extent that single-subject researchers typically hope to see.

Results of a single-subject study showing level, trend and latency. Long description available.

The results of single-subject research can also be analyzed using statistical procedures—and this is becoming more common. There are many different approaches, and single-subject researchers continue to debate which are the most useful. One approach parallels what is typically done in group research. The mean and standard deviation of each participant’s responses under each condition are computed and compared, and inferential statistical tests such as the  t  test or analysis of variance are applied (Fisch, 2001) [3] . (Note that averaging  across  participants is less common.) Another approach is to compute the  percentage of nonoverlapping data  (PND) for each participant (Scruggs & Mastropieri, 2001) [4] . This is the percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition. In the study of Hall and his colleagues, for example, all measures of Robbie’s study time in the first treatment condition were greater than the highest measure in the first baseline, for a PND of 100%. The greater the percentage of nonoverlapping data, the stronger the treatment effect. Still, formal statistical approaches to data analysis in single-subject research are generally considered a supplement to visual inspection, not a replacement for it.

Key Takeaways

  • Single-subject research designs typically involve measuring the dependent variable repeatedly over time and changing conditions (e.g., from baseline to treatment) when the dependent variable has reached a steady state. This approach allows the researcher to see whether changes in the independent variable are causing changes in the dependent variable.
  • In a reversal design, the participant is tested in a baseline condition, then tested in a treatment condition, and then returned to baseline. If the dependent variable changes with the introduction of the treatment and then changes back with the return to baseline, this provides strong evidence of a treatment effect.
  • In a multiple-baseline design, baselines are established for different participants, different dependent variables, or different settings—and the treatment is introduced at a different time on each baseline. If the introduction of the treatment is followed by a change in the dependent variable on each baseline, this provides strong evidence of a treatment effect.
  • Single-subject researchers typically analyze their data by graphing them and making judgments about whether the independent variable is affecting the dependent variable based on level, trend, and latency.
  • Does positive attention from a parent increase a child’s toothbrushing behaviour?
  • Does self-testing while studying improve a student’s performance on weekly spelling tests?
  • Does regular exercise help relieve depression?
  • Practice: Create a graph that displays the hypothetical results for the study you designed in Exercise 1. Write a paragraph in which you describe what the results show. Be sure to comment on level, trend, and latency.

Long Descriptions

Figure 10.3 long description: Line graph showing the results of a study with an ABAB reversal design. The dependent variable was low during first baseline phase; increased during the first treatment; decreased during the second baseline, but was still higher than during the first baseline; and was highest during the second treatment phase. [Return to Figure 10.3]

Figure 10.4 long description: Three line graphs showing the results of a generic multiple-baseline study, in which different baselines are established and treatment is introduced to participants at different times.

For Baseline 1, treatment is introduced one-quarter of the way into the study. The dependent variable ranges between 12 and 16 units during the baseline, but drops down to 10 units with treatment and mostly decreases until the end of the study, ranging between 4 and 10 units.

For Baseline 2, treatment is introduced halfway through the study. The dependent variable ranges between 10 and 15 units during the baseline, then has a sharp decrease to 7 units when treatment is introduced. However, the dependent variable increases to 12 units soon after the drop and ranges between 8 and 10 units until the end of the study.

For Baseline 3, treatment is introduced three-quarters of the way into the study. The dependent variable ranges between 12 and 16 units for the most part during the baseline, with one drop down to 10 units. When treatment is introduced, the dependent variable drops down to 10 units and then ranges between 8 and 9 units until the end of the study. [Return to Figure 10.4]

Figure 10.5 long description: Two graphs showing the results of a generic single-subject study with an ABA design. In the first graph, under condition A, level is high and the trend is increasing. Under condition B, level is much lower than under condition A and the trend is decreasing. Under condition A again, level is about as high as the first time and the trend is increasing. For each change, latency is short, suggesting that the treatment is the reason for the change.

In the second graph, under condition A, level is relatively low and the trend is increasing. Under condition B, level is a little higher than during condition A and the trend is increasing slightly. Under condition A again, level is a little lower than during condition B and the trend is decreasing slightly. It is difficult to determine the latency of these changes, since each change is rather minute, which suggests that the treatment is ineffective. [Return to Figure 10.5]

  • Sidman, M. (1960). Tactics of scientific research: Evaluating experimental data in psychology . Boston, MA: Authors Cooperative. ↵
  • Ross, S. W., & Horner, R. H. (2009). Bully prevention in positive behaviour support. Journal of Applied Behaviour Analysis, 42 , 747–759. ↵
  • Fisch, G. S. (2001). Evaluating data from behavioural analysis: Visual inspection or statistical models.  Behavioural Processes, 54 , 137–154. ↵
  • Scruggs, T. E., & Mastropieri, M. A. (2001). How to summarize single-participant research: Ideas and applications.  Exceptionality, 9 , 227–244. ↵

The researcher waits until the participant’s behaviour in one condition becomes fairly consistent from observation to observation before changing conditions. This way, any change across conditions will be easy to detect.

A study method in which the researcher gathers data on a baseline state, introduces the treatment and continues observation until a steady state is reached, and finally removes the treatment and observes the participant until they return to a steady state.

The level of responding before any treatment is introduced and therefore acts as a kind of control condition.

A baseline phase is followed by separate phases in which different treatments are introduced.

Two or more treatments are alternated relatively quickly on a regular schedule.

A baseline is established for several participants and the treatment is then introduced to each participant at a different time.

The plotting of individual participants’ data, examining the data, and making judgements about whether and to what extent the independent variable had an effect on the dependent variable.

Whether the data is higher or lower based on a visual inspection of the data; a change in the level implies the treatment introduced had an effect.

The gradual increases or decreases in the dependent variable across observations.

The time it takes for the dependent variable to begin changing after a change in conditions.

The percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition.

Research Methods in Psychology - 2nd Canadian Edition Copyright © 2015 by Paul C. Price, Rajiv Jhangiani, & I-Chant A. Chiang is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

single subject research design advantages and disadvantages

ASHA_org_pad

  • CREd Library , Research Design and Method

Single-Subject Experimental Design: An Overview

Cred library, julie wambaugh, and ralf schlosser.

  • December, 2014

DOI: 10.1044/cred-cred-ssd-r101-002

Single-subject experimental designs – also referred to as within-subject or single case experimental designs – are among the most prevalent designs used in CSD treatment research. These designs provide a framework for a quantitative, scientifically rigorous approach where each participant provides his or her own experimental control.

An Overview of Single-Subject Experimental Design

What is single-subject design.

Transcript of the video Q&A with Julie Wambaugh. The essence of single-subject design is using repeated measurements to really understand an individual’s variability, so that we can use our understanding of that variability to determine what the effects of our treatment are. For me, one of the first steps in developing a treatment is understanding what an individual does. So, if I were doing a group treatment study, I would not necessarily be able to see or to understand what was happening with each individual patient, so that I could make modifications to my treatment and understand all the details of what’s happening in terms of the effects of my treatment. For me it’s a natural first step in the progression of developing a treatment. Also with the disorders that we deal with, it’s very hard to get the number of participants that we would need for the gold standard randomized controlled trial. Using single-subject designs works around the possible limiting factor of not having enough subjects in a particular area of study. My mentor was Dr. Cynthia Thompson, who was trained by Leija McReynolds from the University of Kansas, which was where a lot of single-subject design in our field originated, and so I was fortunate to be on the cutting edge of this being implemented in our science back in the late ’70s early ’80s. We saw, I think, a nice revolution in terms of attention to these types of designs, giving credit to the type of data that could be obtained from these types of designs, and a flourishing of these designs really through the 1980s into the 1990s and into the 2000s. But I think — I’ve talked with other single-subject design investigators, and now we’re seeing maybe a little bit of a lapse of attention, and a lack of training again among our young folks. Maybe people assume that people understand the foundation, but they really don’t. And more problems are occurring with the science. I think we need to re-establish the foundations in our young scientists. And this project, I think, will be a big plus toward moving us in that direction.

What is the Role of Single-Subject Design?

Transcript of the video Q&A with Ralf Schlosser. So what has happened recently, is with the onset of evidence-based practice and the adoption of the common hierarchy of evidence in terms of designs. As you noted the randomized controlled trial and meta-analyses of randomized controlled trials are on top of common hierarchies. And that’s fine. But it doesn’t mean that single-subject cannot play a role. For example, single-subject design can be implemented prior to implementing a randomized controlled trial to get a better handle on the magnitude of the effects, the workings of the active ingredients, and all of that. It is very good to prepare that prior to developing a randomized controlled trial. After you have implemented the randomized controlled trial, and then you want to implement the intervention in a more naturalistic setting, it becomes very difficult to do that in a randomized form or at the group level. So again, single-subject design lends itself to more practice-oriented implementation. So I see it as a crucial methodology among several. What we can do to promote what single-subject design is good for is to speak up. It is important that it is being recognized for what it can do and what it cannot do.

Basic Features and Components of Single-Subject Experimental Designs

Defining Features Single-subject designs are defined by the following features:

  • An individual “case” is the unit of intervention and unit of data analysis.
  • The case provides its own control for purposes of comparison. For example, the case’s series of outcome variables are measured prior to the intervention and compared with measurements taken during (and after) the intervention.
  • The outcome variable is measured repeatedly within and across different conditions or levels of the independent variable.

See Kratochwill, et al. (2010)

Structure and Phases of the Design Single-subject designs are typically described according to the arrangement of baseline and treatment phases.

The conditions in a single-subject experimental study are often assigned letters such as the A phase and the B phase, with A being the baseline, or no-treatment phase, and B the experimental, or treatment phase. (Other letters are sometimes used to designate other experimental phases.) Generally, the A phase serves as a time period in which the behavior or behaviors of interest are counted or scored prior to introducing treatment. In the B phase, the same behavior of the individual is counted over time under experimental conditions while treatment is administered. Decisions regarding the effect of treatment are then made by comparing an individual’s performance during the treatment, B phase, and the no-treatment. McReynolds and Thompson (1986)

Basic Components Important primary components of a single-subject study include the following:

  • The participant is the unit of analysis, where a participant may be an individual or a unit such as a class or school.
  • Participant and setting descriptions are provided with sufficient detail to allow another researcher to recruit similar participants in similar settings.
  • Dependent variables are (a) operationally defined and (b) measured repeatedly.
  • An independent variable is actively manipulated, with the fidelity of implementation documented.
  • A baseline condition demonstrates a predictable pattern which can be compared with the intervention condition(s).
  • Experimental control is achieved through introduction and withdrawal/reversal, staggered introduction, or iterative manipulation of the independent variable.
  • Visual analysis is used to interpret the level, trend, and variability of the data within and across phases.
  • External validity of results is accomplished through replication of the effects.
  • Social validity is established by documenting that interventions are functionally related to change in socially important outcomes.

See Horner, et al. (2005)

Common Misconceptions

Single-Subject Experimental Designs versus Case Studies

Transcript of the video Q&A with Julie Wambaugh. One of the biggest mistakes, that is a huge problem, is misunderstanding that a case study is not a single-subject experimental design. There are controls that need to be implemented, and a case study does not equate to a single-subject experimental design. People misunderstand or they misinterpret the term “multiple baseline” to mean that because you are measuring multiple things, that that gives you the experimental control. You have to be demonstrating, instead, that you’ve measured multiple behaviors and that you’ve replicated your treatment effect across those multiple behaviors. So, one instance of one treatment being implemented with one behavior is not sufficient, even if you’ve measured other things. That’s a very common mistake that I see. There’s a design — an ABA design — that’s a very strong experimental design where you measure the behavior, you implement treatment, and you then to get experimental control need to see that treatment go back down to baseline, for you to have evidence of experimental control. It’s a hard behavior to implement in our field because we want our behaviors to stay up! We don’t want to see them return back to baseline. Oftentimes people will say they did an ABA. But really, in effect, all they did was an AB. They measured, they implemented treatment, and the behavior changed because the treatment was successful. That does not give you experimental control. They think they did an experimentally sound design, but because the behavior didn’t do what the design requires to get experimental control, they really don’t have experimental control with their design.

Single-subject studies should not be confused with case studies or other non-experimental designs.

In case study reports, procedures used in treatment of a particular client’s behavior are documented as carefully as possible, and the client’s progress toward habilitation or rehabilitation is reported. These investigations provide useful descriptions. . . .However, a demonstration of treatment effectiveness requires an experimental study. A better role for case studies is description and identification of potential variables to be evaluated in experimental studies. An excellent discussion of this issue can be found in the exchange of letters to the editor by Hoodin (1986) [Article] and Rubow and Swift (1986) [Article]. McReynolds and Thompson (1986)

Other Single-Subject Myths

Transcript of the video Q&A with Ralf Schlosser. Myth 1: Single-subject experiments only have one participant. Obviously, it requires only one subject, one participant. But that’s a misnomer to think that single-subject is just about one participant. You can have as many as twenty or thirty. Myth 2: Single-subject experiments only require one pre-test/post-test. I think a lot of students in the clinic are used to the measurement of one pre-test and one post-test because of the way the goals are written, and maybe there’s not enough time to collect continuous data.But single-case experimental designs require ongoing data collection. There’s this misperception that one baseline data point is enough. But for single-case experimental design you want to see at least three data points, because it allows you to see a trend in the data. So there’s a myth about the number of data points needed. The more data points we have, the better. Myth 3: Single-subject experiments are easy to do. Single-subject design has its own tradition of methodology. It seems very easy to do when you read up on one design. But there are lots of things to consider, and lots of things can go wrong.It requires quite a bit of training. It takes at least one three-credit course that you take over the whole semester.

Further Reading: Components of Single-Subject Designs

Kratochwill, T. R., Hitchcock, J., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M. & Shadish, W. R. (2010). Single-case designs technical documentation. From the What Works Clearinghouse. http://ies.ed.gov/ncee/wwc/documentsum.aspx?sid=229

Further Reading: Single-Subject Design Textbooks

Kazdin, A. E. (2011). Single-case research designs: Methods for clinical and applied settings. Oxford University Press.

McReynolds, L. V. & Kearns, K. (1983). Single-subject experimental designs in communicative disorders. Baltimore: University Park Press.

Further Reading: Foundational Articles

Julie Wambaugh University of Utah

Ralf Schlosser Northeastern University

The content of this page is based on selected clips from video interviews conducted at the ASHA National Office.

Additional digested resources and references for further reading were selected and implemented by CREd Library staff.

Copyright © 2015 American Speech-Language-Hearing Association

logoCREDHeader

Clinical Research Education

More from the cred library, innovative treatments for persons with dementia, implementation science resources for crisp, when the ears interact with the brain, follow asha journals on twitter.

logoAcademy_Revised_2

© 1997-2024 American Speech-Language-Hearing Association Privacy Notice Terms of Use

The Application of the Single Subject Design

  • First Online: 01 January 2009

Cite this chapter

single subject research design advantages and disadvantages

  • Janine E. Janosky 1 ,
  • Shelley L. Leininger 1 ,
  • Michael P. Hoerger 1 &
  • Terry M. Libkuman 1  

784 Accesses

1 Citations

The single subject design is a family of designs that share fundamental concepts and methodologies. The basic components of a single subject design are similar to other research designs, which include the measurement of a variable of interest or outcome variable, and the effect of an intervention on this variable. In general, the researcher expects the intervention or treatment (i.e., the independent variable) to have an impact on the outcome (i.e., the dependent variable). Research conducted in the area of psychology and social sciences commonly refers to the dependent variable as the target behavior [1–3]. In contrast, researchers in the biomedical sciences commonly refer to the dependent variable as the outcome, or more specifically, the clinical impact as measured by laboratory values, intensity, number, or duration of a symptom, and so forth. The term “target behavior” can be limiting when applied to biomedical research, as biomedicine involves numerous types of outcomes, in which behavior is of one possibility. Thus, the terms “outcome” or “outcome of interest” will be used, as these are more accurate descriptors for dependent variables in biomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
  • Durable hardcover edition

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Barlow DH, Hersen M. Single case experimental designs: Strategies for studying behavior change (2nd ed.). New York: Pergamon Press, 1984.

Google Scholar  

Kazdin A. Single-case research designs: Methods for clinical and applied settings . New York: Oxford University Press, 1982.

Kratochwill TR (Ed.). Single subject research: Strategies for evaluating change . New York: Academic Press, 1978.

Hawkins RP. Developing a behavior code. In DP Harmann (Ed.), Using observers to study behavior: New direction for methodology of social and behavioral science (pp.21–35). San Francisco, CA: Jossey-Bass, 1982.

Brown-Chidsey R, Steege MW. Response to intervention : Principles and strategies for effective practice . New York: The Guilford Press, 2005.

Haynes SN, Wilson CC. Behavioral assessment: Recent advances in methods, concepts, and applications . San Francisco, CA: Jossey-Bass, 1979.

Richards SB, Taylor RL, Ramasamy R, Richards RY. Single subject research: Applications in educational and clinical settings . San Diego, CA: Singular Publishing Group, 1999.

Janosky JE, Al-Shboul QM, Pellitieri TR. Validation of the use of a nonparametric smoother for the examination of data from a single-subject design. Behavior Modification. 1995; 19(3): 307–324.

Article   Google Scholar  

Campbell DT, Stanley JC. Experimental and quasi-experimental designs for research . Chicago, IL: Rand McNally, 1966.

Cook TD, Campbell DT (Eds.). Quasi-experimentation: Design and analysis issues for field settings . Boston, MA: Houghton Mifflin Company, 1979.

Krishef CH. Fundamental approaches to single subject design and analysis . Malabar, FL: Krieger Publishing Company, 1991.

Leitenburg H. The use of single-case methodology in psychotherapy research. Journal of Abnormal Psychology. 1973; 82(1): 87–101.

Baer DM, Wolf MM, Risley RR. Some current dimensions of applied behavior analysis. Journal of Applied Behavior Analysis. 1968; 1: 91–97.

Article   PubMed   CAS   Google Scholar  

Tawney JW, Gast DL. Single subject research in special education . Columbus, OH: Merrill, 1984.

Cooper JO, Heron TE, Heward WL. Applied behavior analysis . Columbus, OH: Merrill Publishing Company, 1987.

Hersen M, Barlow DH. Single case experimental design: Strategies for studying behavior change. New York: Pergamon, 1976.

Ullman J, Sulzer-Azaroff B. Multielement baseline design in educational research. In E Ramp, G Semb (Eds.), Behavior analysis: Areas of research and application (pp. 371–391). Englewood Cliffs, NJ: Prentice-Hall, 1975.

Alberto P, Troutman A. Applied behavior analysis for teachers (5th ed.). Columbus, OH: Merrill, 1999.

Neuman S. Alternating treatments designs. In S Neuman, S McCormick (Eds.), Single subject experimental research: Applications for literacy (pp. 64–83). Neward, DE: International Reading Association, 1995.

Barlow DH, Hayes SC. Alternating treatments design: One strategy for comparing the effects of two treatments in a single subject. Journal of Applied Behavior Analysis. 1979; 12: 199–210.

Poling, A, Methot L, LeSage M. Fundamentals of behavior analytic research . New York: Plenum Press, 1995.

Hartmann DP, Hall RV. The changing criterion design. Journal of Applied Behavior Analysis. 1976; 9(4): 527–532.

Hall RV. Behavior modification: The measurement of behavior. Lawrence, KS: H & H Enterprises, 1971.

Download references

Author information

Authors and affiliations.

Central Michigan University, 251 Foust Hall, Mount Pleasant, MI 48859, USA

Dr Janine E. Janosky, Shelley L. Leininger, Michael P. Hoerger & Terry M. Libkuman

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Janine E. Janosky .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Janosky, J.E., Leininger, S.L., Hoerger, M.P., Libkuman, T.M. (2009). The Application of the Single Subject Design. In: Single Subject Designs in Biomedicine. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-2444-2_2

Download citation

DOI : https://doi.org/10.1007/978-90-481-2444-2_2

Published : 08 June 2009

Publisher Name : Springer, Dordrecht

Print ISBN : 978-90-481-2443-5

Online ISBN : 978-90-481-2444-2

eBook Packages : Medicine Medicine (R0)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings

Preview improvements coming to the PMC website in October 2024. Learn More or Try it out now .

  • Advanced Search
  • Journal List
  • Postgrad Med J
  • v.81(959); 2005 Sep

Logo of postmedj

Use of the single subject design for practice based primary care research

The use of a single subject research design is proposed for practice based primary care research. An overview of the rationale of the design, an introduction to the methodology, strengths, limitations, a sample of recent literature citations, a working example, and possible clinical applications are presented.

The Full Text of this article is available as a PDF (55K).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  • McReynolds LV, Thompson CK. Flexibility of single-subject experimental designs. Part I: Review of the basics of single-subject designs. J Speech Hear Disord. 1986 Aug; 51 (3):194–203. [ PubMed ] [ Google Scholar ]
  • Kratochwill T, Alden K, Demuth D, Dawson D, Panicucci C, Arntson P, McMurray N, Hempstead J, Levin J. A further consideration in the application of an analysis-of-variance model for the intrasubject replication design. J Appl Behav Anal. 1974 Winter; 7 (4):629–633. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Larson EB. N-of-1 clinical trials. A technique for improving medical therapeutics. West J Med. 1990 Jan; 152 (1):52–56. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Guyatt GH, Heyting A, Jaeschke R, Keller J, Adachi JD, Roberts RS. N of 1 randomized trials for investigating new drugs. Control Clin Trials. 1990 Apr; 11 (2):88–100. [ PubMed ] [ Google Scholar ]
  • Kearns KP. Flexibility of single-subject experimental designs. Part II: Design selection and arrangement of experimental phases. J Speech Hear Disord. 1986 Aug; 51 (3):204–214. [ PubMed ] [ Google Scholar ]
  • Lashner BA, Hanauer SB, Silverstein MD. Testing nicotine gum for ulcerative colitis patients. Experience with single-patient trials. Dig Dis Sci. 1990 Jul; 35 (7):827–832. [ PubMed ] [ Google Scholar ]
  • Woolf GM, Townsend M, Guyatt G. Treatment of cryptosporidiosis with spiramycin in AIDS. An "N of 1" trial. J Clin Gastroenterol. 1987 Dec; 9 (6):632–634. [ PubMed ] [ Google Scholar ]
  • Balestra DJ, Balestra ST, Wasson JH. Ulcerative colitis and steroid-responsive, diffuse interstitial lung disease. A trial of N = 1. JAMA. 1988 Jul 1; 260 (1):62–64. [ PubMed ] [ Google Scholar ]
  • Langer JC, Winthrop AL, Issenman RM. The single-subject randomized trial. A useful clinical tool for assessing therapeutic efficacy in pediatric practice. Clin Pediatr (Phila) 1993 Nov; 32 (11):654–657. [ PubMed ] [ Google Scholar ]
  • Jaeschke R, Cook D, Sackett DL. The potential role of single-patient randomized controlled trials (N-of-1 RCTs) in clinical practice. J Am Board Fam Pract. 1992 Mar-Apr; 5 (2):227–229. [ PubMed ] [ Google Scholar ]
  • Robin ED, Burke CM. Single-patient randomized clinical trial. Opiates for intractable dyspnea. Chest. 1986 Dec; 90 (6):888–892. [ PubMed ] [ Google Scholar ]
  • Wagner JL, Winett RA. Prompting one low-fat, high-fiber selection in a fast-food restaurant. J Appl Behav Anal. 1988 Summer; 21 (2):179–185. [ PMC free article ] [ PubMed ] [ Google Scholar ]
  • Guyatt GH, Keller JL, Jaeschke R, Rosenbloom D, Adachi JD, Newhouse MT. The n-of-1 randomized controlled trial: clinical usefulness. Our three-year experience. Ann Intern Med. 1990 Feb 15; 112 (4):293–299. [ PubMed ] [ Google Scholar ]
  • Larson EB, Ellsworth AJ, Oas J. Randomized clinical trials in single patients during a 2-year period. JAMA. 1993 Dec 8; 270 (22):2708–2712. [ PubMed ] [ Google Scholar ]
  • Guyatt G, Sackett D, Taylor DW, Chong J, Roberts R, Pugsley S. Determining optimal therapy--randomized trials in individual patients. N Engl J Med. 1986 Apr 3; 314 (14):889–892. [ PubMed ] [ Google Scholar ]

Our websites may use cookies to personalize and enhance your experience. By continuing without changing your cookie settings, you agree to this collection. For more information, please see our University Websites Privacy Notice .

Neag School of Education

Educational Research Basics by Del Siegle

Single subject research.

“ Single subject research (also known as single case experiments) is popular in the fields of special education and counseling. This research design is useful when the researcher is attempting to change the behavior of an individual or a small group of individuals and wishes to document that change. Unlike true experiments where the researcher randomly assigns participants to a control and treatment group, in single subject research the participant serves as both the control and treatment group. The researcher uses line graphs to show the effects of a particular intervention or treatment.  An important factor of single subject research is that only one variable is changed at a time. Single subject research designs are “weak when it comes to external validity….Studies involving single-subject designs that show a particular treatment to be effective in changing behavior must rely on replication–across individuals rather than groups–if such results are be found worthy of generalization” (Fraenkel & Wallen, 2006, p. 318).

Suppose a researcher wished to investigate the effect of praise on reducing disruptive behavior over many days. First she would need to establish a baseline of how frequently the disruptions occurred. She would measure how many disruptions occurred each day for several days. In the example below, the target student was disruptive seven times on the first day, six times on the second day, and seven times on the third day. Note how the sequence of time is depicted on the x-axis (horizontal axis) and the dependent variable (outcome variable) is depicted on the y-axis (vertical axis).

image002

Once a baseline of behavior has been established (when a consistent pattern emerges with at least three data points), the intervention begins. The researcher continues to plot the frequency of behavior while implementing the intervention of praise.

image004

In this example, we can see that the frequency of disruptions decreased once praise began. The design in this example is known as an A-B design. The baseline period is referred to as A and the intervention period is identified as B.

image006

Another design is the A-B-A design. An A-B-A design (also known as a reversal design) involves discontinuing the intervention and returning to a nontreatment condition.

image008

Sometimes an individual’s behavior is so severe that the researcher cannot wait to establish a baseline and must begin with an intervention. In this case, a B-A-B design is used. The intervention is implemented immediately (before establishing a baseline). This is followed by a measurement without the intervention and then a repeat of the intervention.

image010

Multiple-Baseline Design

Sometimes, a researcher may be interested in addressing several issues for one student or a single issue for several students. In this case, a multiple-baseline design is used.

“In a multiple baseline across subjects design, the researcher introduces the intervention to different persons at different times. The significance of this is that if a behavior changes only after the intervention is presented, and this behavior change is seen successively in each subject’s data, the effects can more likely be credited to the intervention itself as opposed to other variables. Multiple-baseline designs do not require the intervention to be withdrawn. Instead, each subject’s own data are compared between intervention and nonintervention behaviors, resulting in each subject acting as his or her own control (Kazdin, 1982). An added benefit of this design, and all single-case designs, is the immediacy of the data. Instead of waiting until postintervention to take measures on the behavior, single-case research prescribes continuous data collection and visual monitoring of that data displayed graphically, allowing for immediate instructional decision-making. Students, therefore, do not linger in an intervention that is not working for them, making the graphic display of single-case research combined with differentiated instruction responsive to the needs of students.” (Geisler, Hessler, Gardner, & Lovelace, 2009)

image012

Regardless of the research design, the line graphs used to illustrate the data contain a set of common elements.

image014

Generally, in single subject research we count the number of times something occurs in a given time period and see if it occurs more or less often in that time period after implementing an intervention. For example, we might measure how many baskets someone makes while shooting for 2 minutes. We would repeat that at least three times to get our baseline. Next, we would test some intervention. We might play music while shooting, give encouragement while shooting, or video the person while shooting to see if our intervention influenced the number of shots made. After the 3 baseline measurements (3 sets of 2 minute shooting), we would measure several more times (sets of 2 minute shooting) after the intervention and plot the time points (number of baskets made in 2 minutes for each of the measured time points). This works well for behaviors that are distinct and can be counted.

Sometimes behaviors come and go over time (such as being off task in a classroom or not listening during a coaching session). The way we can record these is to select a period of time (say 5 minutes) and mark down every 10 seconds whether our participant is on task. We make a minimum of three sets of 5 minute observations for a baseline, implement an intervention, and then make more sets of 5 minute observations with the intervention in place. We use this method rather than counting how many times someone is off task because one could continually be off task and that would only be a count of 1 since the person was continually off task. Someone who might be off task twice for 15 second would be off task twice for a score of 2. However, the second person is certainly not off task twice as much as the first person. Therefore, recording whether the person is off task at 10-second intervals gives a more accurate picture. The person continually off task would have a score of 30 (off task at every second interval for 5 minutes) and the person off task twice for a short time would have a score of 2 (off task only during 2 of the 10 second interval measures.

I also have additional information about how to record single-subject research data .

I hope this helps you better understand single subject research.

I have created a PowerPoint on Single Subject Research , which also available below as a video.

I have also created instructions for creating single-subject research design graphs with Excel .

Fraenkel, J. R., & Wallen, N. E. (2006). How to design and evaluate research in education (6th ed.). Boston, MA: McGraw Hill.

Geisler, J. L., Hessler, T., Gardner, R., III, & Lovelace, T. S. (2009). Differentiated writing interventions for high-achieving urban African American elementary students. Journal of Advanced Academics, 20, 214–247.

Del Siegle, Ph.D. University of Connecticut [email protected] www.delsiegle.info

Revised 02/02/2024

single subject research design advantages and disadvantages

bcba exam review bcbastudy pass the aba exam aba notes

Using Single Subject Experimental Designs

single subject experimental designs applied behavior analysis

What are the Characteristics of Single Subject Experimental Designs?

Single-subject designs are the staple of applied behavior analysis research. Those preparing for the BCBA exam or the BCaBA exam must know single subject terms and definitions. When choosing a single-subject experimental design, ABA researchers are looking for certain characteristics that fit their study. First, individuals serve as their own control in single subject research. In other words, the results of each condition are compared to the participant’s own data. If 3 people participate in the study, each will act as their own control. Second, researchers are trying to predict, verify, and replicate the outcomes of their intervention. Prediction, replication, and verification are essential to single-subject design research and help prove experimental control. Prediction: the hypothesis related to what the outcome will be when measured Verification : showing that baseline data would remain consistent if the independent variable was not manipulated Replication: repeating the independent variable manipulation to show similar results across multiple phases Some experimental designs like withdrawal designs are better suited for demonstrating experimental control than others, but each design has its place. We will now look at the different types of single subject experimental designs and the core features of each.

Reversal Design/Withdrawal Design/A-B-A

Arguably the simplest single subject design, the reversal/withdrawal design is excellent at identifying experimental control. First, baseline data is recorded. Then, an intervention is introduced and the effects are recorded. Finally, the intervention is withdrawn and the experiment returns to baseline. The researcher or researchers then visually analyze the changes from baseline to intervention and determine whether or not experimental control was established. Prediction, verification, and replication are also clearly demonstrated in the withdrawal design. Below is a simple example of this A-B-A design.

reversal design withdrawal design

Advantages: Demonstrate experimental control Disadvantages: Ethical concerns, some behaviors cannot be reversed, not great for high-risk or dangerous behaviors

Multiple Baseline Design/Multiple Probe Design

Multiple baseline designs are used when researchers need to measure across participants, behaviors, or settings. For instance, if you wanted to examine the effects of an independent variable in a classroom, in a home setting, and in a clinical setting, you might use a multiple baseline across settings design. Multiple baseline designs typically involve 3-5 subjects, settings, or behaviors. An intervention is introduced into each segment one at a time while baseline continues in the other conditions. Below is a rough example of what a multiple baseline design typically looks like:

multiple baseline design single subject design

Multiple probe designs are identical to multiple baseline designs except baseline is not continuous. Instead, data is taken only sporadically during the baseline condition. You may use this if time and resources are limited, or you do not anticipate baseline changing. Advantages: No withdrawal needed, examine multiple dependent variables at a time Disadvantages : Sometimes difficult to demonstrate experimental control

Alternating Treatment Design

The alternating treatment design involves rapid/semirandom alternating conditions taking place all in the same phase. There are equal opportunities for conditions to be present during measurement. Conditions are alternated rapidly and randomly to test multiple conditions at once.

alternating treatment design applied behavior analysis

Advantages: No withdrawal, multiple independent variables can be tried rapidly Disadvantages : The multiple treatment effect can impact measurement

Changing Criterion Design

The changing criterion design is great for reducing or increasing behaviors. The behavior should already be in the subject’s repertoire when using changing criterion designs. Reducing smoking or increasing exercise are two common examples of the changing criterion design. With the changing criterion design, treatment is delivered in a series of ascending or descending phases. The criterion that the subject is expected to meet is changed for each phase. You can reverse a phase of a changing criterion design in an attempt to demonstrate experimental control.

changing criterion design aba

Summary of Single Subject Experimental Designs

Single subject designs are popular in both social sciences and in applied behavior analysis. As always, your research question and purpose should dictate your design choice. You will need to know experimental design and the details behind single subject design for the BCBA exam and the BCaBA exam. For BCBA exam study materials check out our BCBA exam prep. For a full breakdown of the BCBA fifth edition task list, check out our YouTube :

Logo for M Libraries Publishing

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

10.2 Single-Subject Research Designs

Learning objectives.

  • Describe the basic elements of a single-subject research design.
  • Design simple single-subject studies using reversal and multiple-baseline designs.
  • Explain how single-subject research designs address the issue of internal validity.
  • Interpret the results of simple single-subject studies based on the visual inspection of graphed data.

General Features of Single-Subject Designs

Before looking at any specific single-subject research designs, it will be helpful to consider some features that are common to most of them. Many of these features are illustrated in Figure 10.3 “Results of a Generic Single-Subject Study Illustrating Several Principles of Single-Subject Research” , which shows the results of a generic single-subject study. First, the dependent variable (represented on the y -axis of the graph) is measured repeatedly over time (represented by the x -axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is tested under one condition per phase. The conditions are often designated by capital letters: A, B, C, and so on. Thus Figure 10.3 “Results of a Generic Single-Subject Study Illustrating Several Principles of Single-Subject Research” represents a design in which the participant was tested first in one condition (A), then tested in another condition (B), and finally retested in the original condition (A). (This is called a reversal design and will be discussed in more detail shortly.)

Figure 10.3 Results of a Generic Single-Subject Study Illustrating Several Principles of Single-Subject Research

Results of a Generic Single-Subject Study Illustrating Several Principles of Single-Subject Research

Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant’s behavior. Specifically, the researcher waits until the participant’s behavior in one condition becomes fairly consistent from observation to observation before changing conditions. This is sometimes referred to as the steady state strategy (Sidman, 1960). The idea is that when the dependent variable has reached a steady state, then any change across conditions will be relatively easy to detect. Recall that we encountered this same principle when discussing experimental research more generally. The effect of an independent variable is easier to detect when the “noise” in the data is minimized.

Reversal Designs

The most basic single-subject research design is the reversal design , also called the ABA design . During the first phase, A, a baseline is established for the dependent variable. This is the level of responding before any treatment is introduced, and therefore the baseline phase is a kind of control condition. When steady state responding is reached, phase B begins as the researcher introduces the treatment. There may be a period of adjustment to the treatment during which the behavior of interest becomes more variable and begins to increase or decrease. Again, the researcher waits until that dependent variable reaches a steady state so that it is clear whether and how much it has changed. Finally, the researcher removes the treatment and again waits until the dependent variable reaches a steady state. This basic reversal design can also be extended with the reintroduction of the treatment (ABAB), another return to baseline (ABABA), and so on.

The study by Hall and his colleagues was an ABAB reversal design. Figure 10.4 “An Approximation of the Results for Hall and Colleagues’ Participant Robbie in Their ABAB Reversal Design” approximates the data for Robbie. The percentage of time he spent studying (the dependent variable) was low during the first baseline phase, increased during the first treatment phase until it leveled off, decreased during the second baseline phase, and again increased during the second treatment phase.

Figure 10.4 An Approximation of the Results for Hall and Colleagues’ Participant Robbie in Their ABAB Reversal Design

An Approximation of the Results for Hall and Colleagues' Participant Robbie in Their ABAB Reversal Design

Why is the reversal—the removal of the treatment—considered to be necessary in this type of design? Why use an ABA design, for example, rather than a simpler AB design? Notice that an AB design is essentially an interrupted time-series design applied to an individual participant. Recall that one problem with that design is that if the dependent variable changes after the treatment is introduced, it is not always clear that the treatment was responsible for the change. It is possible that something else changed at around the same time and that this extraneous variable is responsible for the change in the dependent variable. But if the dependent variable changes with the introduction of the treatment and then changes back with the removal of the treatment, it is much clearer that the treatment (and removal of the treatment) is the cause. In other words, the reversal greatly increases the internal validity of the study.

There are close relatives of the basic reversal design that allow for the evaluation of more than one treatment. In a multiple-treatment reversal design , a baseline phase is followed by separate phases in which different treatments are introduced. For example, a researcher might establish a baseline of studying behavior for a disruptive student (A), then introduce a treatment involving positive attention from the teacher (B), and then switch to a treatment involving mild punishment for not studying (C). The participant could then be returned to a baseline phase before reintroducing each treatment—perhaps in the reverse order as a way of controlling for carryover effects. This particular multiple-treatment reversal design could also be referred to as an ABCACB design.

In an alternating treatments design , two or more treatments are alternated relatively quickly on a regular schedule. For example, positive attention for studying could be used one day and mild punishment for not studying the next, and so on. Or one treatment could be implemented in the morning and another in the afternoon. The alternating treatments design can be a quick and effective way of comparing treatments, but only when the treatments are fast acting.

Multiple-Baseline Designs

There are two potential problems with the reversal design—both of which have to do with the removal of the treatment. One is that if a treatment is working, it may be unethical to remove it. For example, if a treatment seemed to reduce the incidence of self-injury in a developmentally disabled child, it would be unethical to remove that treatment just to show that the incidence of self-injury increases. The second problem is that the dependent variable may not return to baseline when the treatment is removed. For example, when positive attention for studying is removed, a student might continue to study at an increased rate. This could mean that the positive attention had a lasting effect on the student’s studying, which of course would be good. But it could also mean that the positive attention was not really the cause of the increased studying in the first place. Perhaps something else happened at about the same time as the treatment—for example, the student’s parents might have started rewarding him for good grades.

One solution to these problems is to use a multiple-baseline design , which is represented in Figure 10.5 “Results of a Generic Multiple-Baseline Study” . In one version of the design, a baseline is established for each of several participants, and the treatment is then introduced for each one. In essence, each participant is tested in an AB design. The key to this design is that the treatment is introduced at a different time for each participant. The idea is that if the dependent variable changes when the treatment is introduced for one participant, it might be a coincidence. But if the dependent variable changes when the treatment is introduced for multiple participants—especially when the treatment is introduced at different times for the different participants—then it is extremely unlikely to be a coincidence.

Figure 10.5 Results of a Generic Multiple-Baseline Study

Results of a Generic Multiple-Baseline Study: The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline

The multiple baselines can be for different participants, dependent variables, or settings. The treatment is introduced at a different time on each baseline.

As an example, consider a study by Scott Ross and Robert Horner (Ross & Horner, 2009). They were interested in how a school-wide bullying prevention program affected the bullying behavior of particular problem students. At each of three different schools, the researchers studied two students who had regularly engaged in bullying. During the baseline phase, they observed the students for 10-minute periods each day during lunch recess and counted the number of aggressive behaviors they exhibited toward their peers. (The researchers used handheld computers to help record the data.) After 2 weeks, they implemented the program at one school. After 2 more weeks, they implemented it at the second school. And after 2 more weeks, they implemented it at the third school. They found that the number of aggressive behaviors exhibited by each student dropped shortly after the program was implemented at his or her school. Notice that if the researchers had only studied one school or if they had introduced the treatment at the same time at all three schools, then it would be unclear whether the reduction in aggressive behaviors was due to the bullying program or something else that happened at about the same time it was introduced (e.g., a holiday, a television program, a change in the weather). But with their multiple-baseline design, this kind of coincidence would have to happen three separate times—a very unlikely occurrence—to explain their results.

In another version of the multiple-baseline design, multiple baselines are established for the same participant but for different dependent variables, and the treatment is introduced at a different time for each dependent variable. Imagine, for example, a study on the effect of setting clear goals on the productivity of an office worker who has two primary tasks: making sales calls and writing reports. Baselines for both tasks could be established. For example, the researcher could measure the number of sales calls made and reports written by the worker each week for several weeks. Then the goal-setting treatment could be introduced for one of these tasks, and at a later time the same treatment could be introduced for the other task. The logic is the same as before. If productivity increases on one task after the treatment is introduced, it is unclear whether the treatment caused the increase. But if productivity increases on both tasks after the treatment is introduced—especially when the treatment is introduced at two different times—then it seems much clearer that the treatment was responsible.

In yet a third version of the multiple-baseline design, multiple baselines are established for the same participant but in different settings. For example, a baseline might be established for the amount of time a child spends reading during his free time at school and during his free time at home. Then a treatment such as positive attention might be introduced first at school and later at home. Again, if the dependent variable changes after the treatment is introduced in each setting, then this gives the researcher confidence that the treatment is, in fact, responsible for the change.

Data Analysis in Single-Subject Research

In addition to its focus on individual participants, single-subject research differs from group research in the way the data are typically analyzed. As we have seen throughout the book, group research involves combining data across participants. Group data are described using statistics such as means, standard deviations, Pearson’s r , and so on to detect general patterns. Finally, inferential statistics are used to help decide whether the result for the sample is likely to generalize to the population. Single-subject research, by contrast, relies heavily on a very different approach called visual inspection . This means plotting individual participants’ data as shown throughout this chapter, looking carefully at those data, and making judgments about whether and to what extent the independent variable had an effect on the dependent variable. Inferential statistics are typically not used.

In visually inspecting their data, single-subject researchers take several factors into account. One of them is changes in the level of the dependent variable from condition to condition. If the dependent variable is much higher or much lower in one condition than another, this suggests that the treatment had an effect. A second factor is trend , which refers to gradual increases or decreases in the dependent variable across observations. If the dependent variable begins increasing or decreasing with a change in conditions, then again this suggests that the treatment had an effect. It can be especially telling when a trend changes directions—for example, when an unwanted behavior is increasing during baseline but then begins to decrease with the introduction of the treatment. A third factor is latency , which is the time it takes for the dependent variable to begin changing after a change in conditions. In general, if a change in the dependent variable begins shortly after a change in conditions, this suggests that the treatment was responsible.

In the top panel of Figure 10.6 , there are fairly obvious changes in the level and trend of the dependent variable from condition to condition. Furthermore, the latencies of these changes are short; the change happens immediately. This pattern of results strongly suggests that the treatment was responsible for the changes in the dependent variable. In the bottom panel of Figure 10.6 , however, the changes in level are fairly small. And although there appears to be an increasing trend in the treatment condition, it looks as though it might be a continuation of a trend that had already begun during baseline. This pattern of results strongly suggests that the treatment was not responsible for any changes in the dependent variable—at least not to the extent that single-subject researchers typically hope to see.

Figure 10.6

Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel

Visual inspection of the data suggests an effective treatment in the top panel but an ineffective treatment in the bottom panel.

The results of single-subject research can also be analyzed using statistical procedures—and this is becoming more common. There are many different approaches, and single-subject researchers continue to debate which are the most useful. One approach parallels what is typically done in group research. The mean and standard deviation of each participant’s responses under each condition are computed and compared, and inferential statistical tests such as the t test or analysis of variance are applied (Fisch, 2001). (Note that averaging across participants is less common.) Another approach is to compute the percentage of nonoverlapping data (PND) for each participant (Scruggs & Mastropieri, 2001). This is the percentage of responses in the treatment condition that are more extreme than the most extreme response in a relevant control condition. In the study of Hall and his colleagues, for example, all measures of Robbie’s study time in the first treatment condition were greater than the highest measure in the first baseline, for a PND of 100%. The greater the percentage of nonoverlapping data, the stronger the treatment effect. Still, formal statistical approaches to data analysis in single-subject research are generally considered a supplement to visual inspection, not a replacement for it.

Key Takeaways

  • Single-subject research designs typically involve measuring the dependent variable repeatedly over time and changing conditions (e.g., from baseline to treatment) when the dependent variable has reached a steady state. This approach allows the researcher to see whether changes in the independent variable are causing changes in the dependent variable.
  • In a reversal design, the participant is tested in a baseline condition, then tested in a treatment condition, and then returned to baseline. If the dependent variable changes with the introduction of the treatment and then changes back with the return to baseline, this provides strong evidence of a treatment effect.
  • In a multiple-baseline design, baselines are established for different participants, different dependent variables, or different settings—and the treatment is introduced at a different time on each baseline. If the introduction of the treatment is followed by a change in the dependent variable on each baseline, this provides strong evidence of a treatment effect.
  • Single-subject researchers typically analyze their data by graphing them and making judgments about whether the independent variable is affecting the dependent variable based on level, trend, and latency.

Practice: Design a simple single-subject study (using either a reversal or multiple-baseline design) to answer the following questions. Be sure to specify the treatment, operationally define the dependent variable, decide when and where the observations will be made, and so on.

  • Does positive attention from a parent increase a child’s toothbrushing behavior?
  • Does self-testing while studying improve a student’s performance on weekly spelling tests?
  • Does regular exercise help relieve depression?
  • Practice: Create a graph that displays the hypothetical results for the study you designed in Exercise 1. Write a paragraph in which you describe what the results show. Be sure to comment on level, trend, and latency.

Fisch, G. S. (2001). Evaluating data from behavioral analysis: Visual inspection or statistical models. Behavioural Processes , 54 , 137–154.

Ross, S. W., & Horner, R. H. (2009). Bully prevention in positive behavior support. Journal of Applied Behavior Analysis , 42 , 747–759.

Scruggs, T. E., & Mastropieri, M. A. (2001). How to summarize single-participant research: Ideas and applications. Exceptionality , 9 , 227–244.

Sidman, M. (1960). Tactics of scientific research: Evaluating experimental data in psychology . Boston, MA: Authors Cooperative.

Research Methods in Psychology Copyright © 2016 by University of Minnesota is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Making behavior analysis fun and accessible

The AllDayABA Blog

Join our mailing list.

If you want to be the first to read new blog posts, gain access to awesome resources, and hear about upcoming projects, then click "Sign Up" to become a part of our family today!

Copyright © 2022 AllDayABA - All Rights Reserved.

Powered by GoDaddy

Cookie Policy

This website uses cookies. By continuing to use this site, you accept our use of cookies.

Single-Subject Experiments

  • Group means could conceal patterns that appear in individuals' data
  • Big effects - only clinically significant effects are likely to be found
  • Ethical and practical advantages (eg; can not withhold treatment; too few subjects)
  • Flexibility

Disadvantages

  • Can not examine any between-subject effects
  • Can not detect small effects
  • May be less generalizable

Control Strategies in Single-subject Research

  • A-B Design ( Stable Baseline )
  • A-B-A Design
  • Baseline, treatment, withdrawl
  • Treatment may not be reversible
  • May not be ethical to leave the subject in the untreated condition
  • A-B-A-B Design ( Repeated Treatments Design )
  • A-B-A-B-BC-B-BC ( Interaction Design )
  • For examining the effects of 2 variables
  • Obeys the cardinal rule of single-subject designs:   Change only one thing at a time!
  • Multiple Baselines Design
  • Introduce the treatment at different times for different behaviors
  • Really has multiple DVs and related IV's; example:
  • IV1 = reward behavior A
  • DV1 = frequency of behavior A
  • IV2 = reward behavior B
  • DV2 = frequency of behavior B
  • Changing Criterion - changing the criterion for measuring a change in behavior as learning takes place (because some learning is irreversible)

Contrasting the means of Experimental Control in single-subject vs. group designs

  • Group Designs - Control = eliminating confounds
  • Single-Subject designs - Control = reducing error variance

(Although this contrast between single-subject and group designs is not a hard and fast rule, it is still a useful generalization.)

Within-Subjects Design: Examples, Pros & Cons

Julia Simkus

Editor at Simply Psychology

BA (Hons) Psychology, Princeton University

Julia Simkus is a graduate of Princeton University with a Bachelor of Arts in Psychology. She is currently studying for a Master's Degree in Counseling for Mental Health and Wellness in September 2023. Julia's research has been published in peer reviewed journals.

Learn about our Editorial Process

Saul McLeod, PhD

Editor-in-Chief for Simply Psychology

BSc (Hons) Psychology, MRes, PhD, University of Manchester

Saul McLeod, PhD., is a qualified psychology teacher with over 18 years of experience in further and higher education. He has been published in peer-reviewed journals, including the Journal of Clinical Psychology.

Olivia Guy-Evans, MSc

Associate Editor for Simply Psychology

BSc (Hons) Psychology, MSc Psychology of Education

Olivia Guy-Evans is a writer and associate editor for Simply Psychology. She has previously worked in healthcare and educational sectors.

On This Page:

A within-subjects design is an experimental design in which the same group of participants is exposed to all independent variable levels. This design controls for individual differences and often requires fewer participants.

A within-subjects design allows researchers to assign test participants to different treatment groups. In a within-subjects design, each participant experiences every condition of the independent variable.

How it Works

Researchers test the same participants repeatedly across all treatments to assess for differences between the variables. Within-subjects designs do not have a control group as all participants are tested both before and after they are exposed to treatment.

This study design is coined “within-subjects” because conditions are compared within the same group of participants. On the other hand, a between-subjects design is the opposite of a within-subjects design where the differences in conditions occur between the groups of subjects.

Using a within-subjects design

Within-subjects studies are typically used for longitudinal studies , as researchers can assess changes within the same group of subjects over an extended period of time.

For example, assume a psychiatrist is looking for a new medication to treat patients with Obsessive-Compulsive Disorder (OCD). She has four potential options for medications to help patients with their OCD.

In order to determine which medication is going to be the most beneficial for her patients, she measures each child’s performance four times, once after being on each of four drug doses for a week. Each subject’s performance is thus measured at each of the four levels of the factor, or dose.

Does not require a large subject pool

Within-subjects designs require smaller sample sizes as each participant provides repeated measures for each treatment condition. This also reduces the cost and resources necessary to conduct these studies.

On the other hand, a between-subjects study would require at least twice as many participants as a within-subject design. This also means twice the cost and resources.

No variation in individual differences

One reason researchers use within-group designs is to control for individual differences. Because the same participants are used in all conditions, each participant serves as their own control.

Since the same individuals participate in all conditions, there will be no effects from variations in individual differences between conditions.

Because individual variation is removed, this study design has little room for error, and researchers can easily detect differences among treatments.

Disadvantages

Data collection can take a long time since each participant is given multiple treatments. In addition, it can be challenging to control the effects of time on the study’s outcomes.

Between-subjects studies tend to have shorter sessions than within-subject ones.

Carryover effects

In within-subject designs, participants are exposed to several levels of the same independent variable. This prior exposure to a treatment condition could alter the outcomes of later treatment conditions.

For example, exposure to a reaction time test could make participants’ reaction times faster in a subsequent treatment due to familiarity with the study.

Randomization and counterbalancing can help reduce these carryover effects.

  • A course of Cognitive Decline in Hematopoietic Stem Cell Transplantation: A Within-subjects Design (Friedman et al., 2009).
  • Beliefs, attitudes, and intentions toward nuclear energy before and after Chernobyl in a longitudinal within-subjects design (Verplanken, 1989).
  • A comparison of paper and online tests using a within-subjects design and propensity score matching study (Lottridge, Nicewander, & Mitzel, 2011).
  • A test of exercise analgesia using signal detection theory and a within-subjects design (Fuller and Robinson, 1993).
  • Reported jealousy differs as a function of menstrual cycle stage and contraceptive pill use: A within-subjects investigation (Cobey et al., 2012).
  • Behavioral effects of haloperidol in young autistic children: An objective analysis using a within-subjects reversal design (Cohen et al., 1980).
  • Tipping and service quality: A within-subjects analysis (Lynn and Sturman, 2010).

Learning Check 

Which of the following are advantages of using a within-participant design in experimental research?
  • It controls for individual differences, as the same participants are used in all conditions.
  • It requires fewer participants compared to between-participants designs.
  • It allows for observing changes over time or conditions in the same individual.
  • All of the above.
  • It is unaffected by order or sequence effects.
  • It allows for the study of interactions between independent variables.
  • It requires less time to collect data because each participant is in all conditions.
  • None of the above.

4. Note: Option 5 is incorrect because within-participant designs can indeed be affected by order or sequence effects. Option 7 can also be incorrect because, even though each participant is in all conditions, each condition may require separate sessions, potentially lengthening the data collection time. Option 6 is not exclusively an advantage of within-participant designs and can apply to between-participants designs as well.

Frequently Asked Questions

1. what’s the difference between a between-subjects versus within-subjects design.

Between-subjects and within-subjects designs are two different methods for researchers to assign test participants to different treatments.

In a between-subjects design, researchers will assign each subject to only one treatment condition. In contrast, in a within-subjects design, researchers will test the same participants repeatedly across all conditions.

Between-subjects and within-subjects designs can be used in place of each other or in conjunction with each other.

Each type of experimental design has its own advantages and disadvantages, and it is usually up to the researchers to determine which method will be more beneficial for their study.

2. Can you use a between-subjects and within-subjects design in the same study?

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design).

Factorial designs are a type of experiment where multiple independent variables are tested. Each level of one independent variable (a factor) is combined with each level of every other independent variable to produce different conditions.

Each combination becomes a condition in the experiment. In a factorial experiment, the researcher has to decide for each independent variable whether to use a between-subjects design or a within-subjects design.

In a mixed factorial design, researchers will manipulate one independent variable between subjects and another within subjects.

Allen, M. (2017). The sage encyclopedia of communication research methods (Vols. 1-4). Thousand Oaks, CA: SAGE Publications, Inc doi: 10.4135/9781483381411

Baeyens, F., Díaz, E., & Ruiz, G. (2005). Resistance to extinction of human evaluative conditioning using a between‐subjects design. Cognition & Emotion, 19(2), 245-268.

Birnbaum, M. H. (1999). How to show that 9> 221: Collect judgments in a between-subjects design. Psychological Methods, 4(3), 243.

Carey, A. A., Lester, T. G., & Valencia, R. M. (2016). The Effects of a Fatal Vision Goggles Intervention on Middle School Aged Children’s Attitudes toward Drinking and Driving and Texting and Driving as Related to Impulsivity: A Between Subjects Design (Doctoral dissertation, Brenau University).

Chang, H. I., & Kang, W. C. (2018). The Impact of the 2018 North Korea-United States Summit on South Koreans’ Altruism Toward and Trust in North Korean Refugees: Between-Subjects Design Around the Summit. Available at SSRN 3270334.

Egele, V. S., Kiefer, L. H., & Stark, R. (2021). Faking self-reports of health behavior: a comparison between a within-and a between-subjects design. Health psychology and behavioral medicine, 9(1), 895-916.

Ehrlichman, H., Brown Kuhl, S., Zhu, J., & WRRENBURG, S. (1997). Startle reflex modulation by pleasant and unpleasant odors in a between‐subjects design. Psychophysiology, 34(6), 726-729.

Jhangiani, R. S., Chiang, I.-C. A., Cuttler, C., & Leighton, D. C. (2019, August 1). Experimental Design. Research Methods in Psychology. Retrieved from https://kpu.pressbooks.pub/psychmethods4e/

Print Friendly, PDF & Email

Frequently asked questions

What are the pros and cons of a within-subjects design.

Within-subjects designs have many potential threats to internal validity , but they are also very statistically powerful .

Advantages:

  • Only requires small samples
  • Statistically powerful
  • Removes the effects of individual differences on the outcomes

Disadvantages:

  • Internal validity threats reduce the likelihood of establishing a direct relationship between variables
  • Time-related effects, such as growth, can influence the outcomes
  • Carryover effects mean that the specific order of different treatments affect the outcomes

Frequently asked questions: Methodology

Attrition refers to participants leaving a study. It always happens to some extent—for example, in randomized controlled trials for medical research.

Differential attrition occurs when attrition or dropout rates differ systematically between the intervention and the control group . As a result, the characteristics of the participants who drop out differ from the characteristics of those who stay in the study. Because of this, study results may be biased .

Action research is conducted in order to solve a particular issue immediately, while case studies are often conducted over a longer period of time and focus more on observing and analyzing a particular ongoing phenomenon.

Action research is focused on solving a problem or informing individual and community-based knowledge in a way that impacts teaching, learning, and other related processes. It is less focused on contributing theoretical input, instead producing actionable input.

Action research is particularly popular with educators as a form of systematic inquiry because it prioritizes reflection and bridges the gap between theory and practice. Educators are able to simultaneously investigate an issue as they solve it, and the method is very iterative and flexible.

A cycle of inquiry is another name for action research . It is usually visualized in a spiral shape following a series of steps, such as “planning → acting → observing → reflecting.”

To make quantitative observations , you need to use instruments that are capable of measuring the quantity you want to observe. For example, you might use a ruler to measure the length of an object or a thermometer to measure its temperature.

Criterion validity and construct validity are both types of measurement validity . In other words, they both show you how accurately a method measures something.

While construct validity is the degree to which a test or other measurement method measures what it claims to measure, criterion validity is the degree to which a test can predictively (in the future) or concurrently (in the present) measure something.

Construct validity is often considered the overarching type of measurement validity . You need to have face validity , content validity , and criterion validity in order to achieve construct validity.

Convergent validity and discriminant validity are both subtypes of construct validity . Together, they help you evaluate whether a test measures the concept it was designed to measure.

  • Convergent validity indicates whether a test that is designed to measure a particular construct correlates with other tests that assess the same or similar construct.
  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related. This type of validity is also called divergent validity .

You need to assess both in order to demonstrate construct validity. Neither one alone is sufficient for establishing construct validity.

  • Discriminant validity indicates whether two tests that should not be highly related to each other are indeed not related

Content validity shows you how accurately a test or other measurement method taps  into the various aspects of the specific construct you are researching.

In other words, it helps you answer the question: “does the test measure all aspects of the construct I want to measure?” If it does, then the test has high content validity.

The higher the content validity, the more accurate the measurement of the construct.

If the test fails to include parts of the construct, or irrelevant parts are included, the validity of the instrument is threatened, which brings your results into question.

Face validity and content validity are similar in that they both evaluate how suitable the content of a test is. The difference is that face validity is subjective, and assesses content at surface level.

When a test has strong face validity, anyone would agree that the test’s questions appear to measure what they are intended to measure.

For example, looking at a 4th grade math test consisting of problems in which students have to add and multiply, most people would agree that it has strong face validity (i.e., it looks like a math test).

On the other hand, content validity evaluates how well a test represents all the aspects of a topic. Assessing content validity is more systematic and relies on expert evaluation. of each question, analyzing whether each one covers the aspects that the test was designed to cover.

A 4th grade math test would have high content validity if it covered all the skills taught in that grade. Experts(in this case, math teachers), would have to evaluate the content validity by comparing the test to the learning objectives.

Snowball sampling is a non-probability sampling method . Unlike probability sampling (which involves some form of random selection ), the initial individuals selected to be studied are the ones who recruit new participants.

Because not every member of the target population has an equal chance of being recruited into the sample, selection in snowball sampling is non-random.

Snowball sampling is a non-probability sampling method , where there is not an equal chance for every member of the population to be included in the sample .

This means that you cannot use inferential statistics and make generalizations —often the goal of quantitative research . As such, a snowball sample is not representative of the target population and is usually a better fit for qualitative research .

Snowball sampling relies on the use of referrals. Here, the researcher recruits one or more initial participants, who then recruit the next ones.

Participants share similar characteristics and/or know each other. Because of this, not every member of the population has an equal chance of being included in the sample, giving rise to sampling bias .

Snowball sampling is best used in the following cases:

  • If there is no sampling frame available (e.g., people with a rare disease)
  • If the population of interest is hard to access or locate (e.g., people experiencing homelessness)
  • If the research focuses on a sensitive topic (e.g., extramarital affairs)

The reproducibility and replicability of a study can be ensured by writing a transparent, detailed method section and using clear, unambiguous language.

Reproducibility and replicability are related terms.

  • Reproducing research entails reanalyzing the existing data in the same manner.
  • Replicating (or repeating ) the research entails reconducting the entire analysis, including the collection of new data . 
  • A successful reproduction shows that the data analyses were conducted in a fair and honest manner.
  • A successful replication shows that the reliability of the results is high.

Stratified sampling and quota sampling both involve dividing the population into subgroups and selecting units from each subgroup. The purpose in both cases is to select a representative sample and/or to allow comparisons between subgroups.

The main difference is that in stratified sampling, you draw a random sample from each subgroup ( probability sampling ). In quota sampling you select a predetermined number or proportion of units, in a non-random manner ( non-probability sampling ).

Purposive and convenience sampling are both sampling methods that are typically used in qualitative data collection.

A convenience sample is drawn from a source that is conveniently accessible to the researcher. Convenience sampling does not distinguish characteristics among the participants. On the other hand, purposive sampling focuses on selecting participants possessing characteristics associated with the research study.

The findings of studies based on either convenience or purposive sampling can only be generalized to the (sub)population from which the sample is drawn, and not to the entire population.

Random sampling or probability sampling is based on random selection. This means that each unit has an equal chance (i.e., equal probability) of being included in the sample.

On the other hand, convenience sampling involves stopping people at random, which means that not everyone has an equal chance of being selected depending on the place, time, or day you are collecting your data.

Convenience sampling and quota sampling are both non-probability sampling methods. They both use non-random criteria like availability, geographical proximity, or expert knowledge to recruit study participants.

However, in convenience sampling, you continue to sample units or cases until you reach the required sample size.

In quota sampling, you first need to divide your population of interest into subgroups (strata) and estimate their proportions (quota) in the population. Then you can start your data collection, using convenience sampling to recruit participants, until the proportions in each subgroup coincide with the estimated proportions in the population.

A sampling frame is a list of every member in the entire population . It is important that the sampling frame is as complete as possible, so that your sample accurately reflects your population.

Stratified and cluster sampling may look similar, but bear in mind that groups created in cluster sampling are heterogeneous , so the individual characteristics in the cluster vary. In contrast, groups created in stratified sampling are homogeneous , as units share characteristics.

Relatedly, in cluster sampling you randomly select entire groups and include all units of each group in your sample. However, in stratified sampling, you select some units of all groups and include them in your sample. In this way, both methods can ensure that your sample is representative of the target population .

A systematic review is secondary research because it uses existing research. You don’t collect new data yourself.

The key difference between observational studies and experimental designs is that a well-done observational study does not influence the responses of participants, while experiments do have some sort of treatment condition applied to at least some participants by random assignment .

An observational study is a great choice for you if your research question is based purely on observations. If there are ethical, logistical, or practical concerns that prevent you from conducting a traditional experiment , an observational study may be a good choice. In an observational study, there is no interference or manipulation of the research subjects, as well as no control or treatment groups .

It’s often best to ask a variety of people to review your measurements. You can ask experts, such as other researchers, or laypeople, such as potential participants, to judge the face validity of tests.

While experts have a deep understanding of research methods , the people you’re studying can provide you with valuable insights you may have missed otherwise.

Face validity is important because it’s a simple first step to measuring the overall validity of a test or technique. It’s a relatively intuitive, quick, and easy way to start checking whether a new measure seems useful at first glance.

Good face validity means that anyone who reviews your measure says that it seems to be measuring what it’s supposed to. With poor face validity, someone reviewing your measure may be left confused about what you’re measuring and why you’re using this method.

Face validity is about whether a test appears to measure what it’s supposed to measure. This type of validity is concerned with whether a measure seems relevant and appropriate for what it’s assessing only on the surface.

Statistical analyses are often applied to test validity with data from your measures. You test convergent validity and discriminant validity with correlations to see if results from your test are positively or negatively related to those of other established tests.

You can also use regression analyses to assess whether your measure is actually predictive of outcomes that you expect it to predict theoretically. A regression analysis that supports your expectations strengthens your claim of construct validity .

When designing or evaluating a measure, construct validity helps you ensure you’re actually measuring the construct you’re interested in. If you don’t have construct validity, you may inadvertently measure unrelated or distinct constructs and lose precision in your research.

Construct validity is often considered the overarching type of measurement validity ,  because it covers all of the other types. You need to have face validity , content validity , and criterion validity to achieve construct validity.

Construct validity is about how well a test measures the concept it was designed to evaluate. It’s one of four types of measurement validity , which includes construct validity, face validity , and criterion validity.

There are two subtypes of construct validity.

  • Convergent validity : The extent to which your measure corresponds to measures of related constructs
  • Discriminant validity : The extent to which your measure is unrelated or negatively related to measures of distinct constructs

Naturalistic observation is a valuable tool because of its flexibility, external validity , and suitability for topics that can’t be studied in a lab setting.

The downsides of naturalistic observation include its lack of scientific control , ethical considerations , and potential for bias from observers and subjects.

Naturalistic observation is a qualitative research method where you record the behaviors of your research subjects in real world settings. You avoid interfering or influencing anything in a naturalistic observation.

You can think of naturalistic observation as “people watching” with a purpose.

A dependent variable is what changes as a result of the independent variable manipulation in experiments . It’s what you’re interested in measuring, and it “depends” on your independent variable.

In statistics, dependent variables are also called:

  • Response variables (they respond to a change in another variable)
  • Outcome variables (they represent the outcome you want to measure)
  • Left-hand-side variables (they appear on the left-hand side of a regression equation)

An independent variable is the variable you manipulate, control, or vary in an experimental study to explore its effects. It’s called “independent” because it’s not influenced by any other variables in the study.

Independent variables are also called:

  • Explanatory variables (they explain an event or outcome)
  • Predictor variables (they can be used to predict the value of a dependent variable)
  • Right-hand-side variables (they appear on the right-hand side of a regression equation).

As a rule of thumb, questions related to thoughts, beliefs, and feelings work well in focus groups. Take your time formulating strong questions, paying special attention to phrasing. Be careful to avoid leading questions , which can bias your responses.

Overall, your focus group questions should be:

  • Open-ended and flexible
  • Impossible to answer with “yes” or “no” (questions that start with “why” or “how” are often best)
  • Unambiguous, getting straight to the point while still stimulating discussion
  • Unbiased and neutral

A structured interview is a data collection method that relies on asking questions in a set order to collect data on a topic. They are often quantitative in nature. Structured interviews are best used when: 

  • You already have a very clear understanding of your topic. Perhaps significant research has already been conducted, or you have done some prior research yourself, but you already possess a baseline for designing strong structured questions.
  • You are constrained in terms of time or resources and need to analyze your data quickly and efficiently.
  • Your research question depends on strong parity between participants, with environmental conditions held constant.

More flexible interview options include semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias is the tendency for interview participants to give responses that will be viewed favorably by the interviewer or other participants. It occurs in all types of interviews and surveys , but is most common in semi-structured interviews , unstructured interviews , and focus groups .

Social desirability bias can be mitigated by ensuring participants feel at ease and comfortable sharing their views. Make sure to pay attention to your own body language and any physical or verbal cues, such as nodding or widening your eyes.

This type of bias can also occur in observations if the participants know they’re being observed. They might alter their behavior accordingly.

The interviewer effect is a type of bias that emerges when a characteristic of an interviewer (race, age, gender identity, etc.) influences the responses given by the interviewee.

There is a risk of an interviewer effect in all types of interviews , but it can be mitigated by writing really high-quality interview questions.

A semi-structured interview is a blend of structured and unstructured types of interviews. Semi-structured interviews are best used when:

  • You have prior interview experience. Spontaneous questions are deceptively challenging, and it’s easy to accidentally ask a leading question or make a participant uncomfortable.
  • Your research question is exploratory in nature. Participant answers can guide future research questions and help you develop a more robust knowledge base for future research.

An unstructured interview is the most flexible type of interview, but it is not always the best fit for your research topic.

Unstructured interviews are best used when:

  • You are an experienced interviewer and have a very strong background in your research topic, since it is challenging to ask spontaneous, colloquial questions.
  • Your research question is exploratory in nature. While you may have developed hypotheses, you are open to discovering new or shifting viewpoints through the interview process.
  • You are seeking descriptive data, and are ready to ask questions that will deepen and contextualize your initial thoughts and hypotheses.
  • Your research depends on forming connections with your participants and making them feel comfortable revealing deeper emotions, lived experiences, or thoughts.

The four most common types of interviews are:

  • Structured interviews : The questions are predetermined in both topic and order. 
  • Semi-structured interviews : A few questions are predetermined, but other questions aren’t planned.
  • Unstructured interviews : None of the questions are predetermined.
  • Focus group interviews : The questions are presented to a group instead of one individual.

Deductive reasoning is commonly used in scientific research, and it’s especially associated with quantitative research .

In research, you might have come across something called the hypothetico-deductive method . It’s the scientific method of testing hypotheses to check whether your predictions are substantiated by real-world data.

Deductive reasoning is a logical approach where you progress from general ideas to specific conclusions. It’s often contrasted with inductive reasoning , where you start with specific observations and form general conclusions.

Deductive reasoning is also called deductive logic.

There are many different types of inductive reasoning that people use formally or informally.

Here are a few common types:

  • Inductive generalization : You use observations about a sample to come to a conclusion about the population it came from.
  • Statistical generalization: You use specific numbers about samples to make statements about populations.
  • Causal reasoning: You make cause-and-effect links between different things.
  • Sign reasoning: You make a conclusion about a correlational relationship between different things.
  • Analogical reasoning: You make a conclusion about something based on its similarities to something else.

Inductive reasoning is a bottom-up approach, while deductive reasoning is top-down.

Inductive reasoning takes you from the specific to the general, while in deductive reasoning, you make inferences by going from general premises to specific conclusions.

In inductive research , you start by making observations or gathering data. Then, you take a broad scan of your data and search for patterns. Finally, you make general conclusions that you might incorporate into theories.

Inductive reasoning is a method of drawing conclusions by going from the specific to the general. It’s usually contrasted with deductive reasoning, where you proceed from general information to specific conclusions.

Inductive reasoning is also called inductive logic or bottom-up reasoning.

A hypothesis states your predictions about what your research will find. It is a tentative answer to your research question that has not yet been tested. For some research projects, you might have to write several hypotheses that address different aspects of your research question.

A hypothesis is not just a guess — it should be based on existing theories and knowledge. It also has to be testable, which means you can support or refute it through scientific research methods (such as experiments, observations and statistical analysis of data).

Triangulation can help:

  • Reduce research bias that comes from using a single method, theory, or investigator
  • Enhance validity by approaching the same topic with different tools
  • Establish credibility by giving you a complete picture of the research problem

But triangulation can also pose problems:

  • It’s time-consuming and labor-intensive, often involving an interdisciplinary team.
  • Your results may be inconsistent or even contradictory.

There are four main types of triangulation :

  • Data triangulation : Using data from different times, spaces, and people
  • Investigator triangulation : Involving multiple researchers in collecting or analyzing data
  • Theory triangulation : Using varying theoretical perspectives in your research
  • Methodological triangulation : Using different methodologies to approach the same topic

Many academic fields use peer review , largely to determine whether a manuscript is suitable for publication. Peer review enhances the credibility of the published manuscript.

However, peer review is also common in non-academic settings. The United Nations, the European Union, and many individual nations use peer review to evaluate grant applications. It is also widely used in medical and health-related fields as a teaching or quality-of-care measure. 

Peer assessment is often used in the classroom as a pedagogical tool. Both receiving feedback and providing it are thought to enhance the learning process, helping students think critically and collaboratively.

Peer review can stop obviously problematic, falsified, or otherwise untrustworthy research from being published. It also represents an excellent opportunity to get feedback from renowned experts in your field. It acts as a first defense, helping you ensure your argument is clear and that there are no gaps, vague terms, or unanswered questions for readers who weren’t involved in the research process.

Peer-reviewed articles are considered a highly credible source due to this stringent process they go through before publication.

In general, the peer review process follows the following steps: 

  • First, the author submits the manuscript to the editor.
  • Reject the manuscript and send it back to author, or 
  • Send it onward to the selected peer reviewer(s) 
  • Next, the peer review process occurs. The reviewer provides feedback, addressing any major or minor issues with the manuscript, and gives their advice regarding what edits should be made. 
  • Lastly, the edited manuscript is sent back to the author. They input the edits, and resubmit it to the editor for publication.

Exploratory research is often used when the issue you’re studying is new or when the data collection process is challenging for some reason.

You can use exploratory research if you have a general idea or a specific question that you want to study but there is no preexisting knowledge or paradigm with which to study it.

Exploratory research is a methodology approach that explores research questions that have not previously been studied in depth. It is often used when the issue you’re studying is new, or the data collection process is challenging in some way.

Explanatory research is used to investigate how or why a phenomenon occurs. Therefore, this type of research is often one of the first stages in the research process , serving as a jumping-off point for future research.

Exploratory research aims to explore the main aspects of an under-researched problem, while explanatory research aims to explain the causes and consequences of a well-defined problem.

Explanatory research is a research method used to investigate how or why something occurs when only a small amount of information is available pertaining to that topic. It can help you increase your understanding of a given topic.

Clean data are valid, accurate, complete, consistent, unique, and uniform. Dirty data include inconsistencies and errors.

Dirty data can come from any part of the research process, including poor research design , inappropriate measurement materials, or flawed data entry.

Data cleaning takes place between data collection and data analyses. But you can use some methods even before collecting data.

For clean data, you should start by designing measures that collect valid data. Data validation at the time of data entry or collection helps you minimize the amount of data cleaning you’ll need to do.

After data collection, you can use data standardization and data transformation to clean your data. You’ll also deal with any missing values, outliers, and duplicate values.

Every dataset requires different techniques to clean dirty data , but you need to address these issues in a systematic way. You focus on finding and resolving data points that don’t agree or fit with the rest of your dataset.

These data might be missing values, outliers, duplicate values, incorrectly formatted, or irrelevant. You’ll start with screening and diagnosing your data. Then, you’ll often standardize and accept or remove data to make your dataset consistent and valid.

Data cleaning is necessary for valid and appropriate analyses. Dirty data contain inconsistencies or errors , but cleaning your data helps you minimize or resolve these.

Without data cleaning, you could end up with a Type I or II error in your conclusion. These types of erroneous conclusions can be practically significant with important consequences, because they lead to misplaced investments or missed opportunities.

Data cleaning involves spotting and resolving potential data inconsistencies or errors to improve your data quality. An error is any value (e.g., recorded weight) that doesn’t reflect the true value (e.g., actual weight) of something that’s being measured.

In this process, you review, analyze, detect, modify, or remove “dirty” data to make your dataset “clean.” Data cleaning is also called data cleansing or data scrubbing.

Research misconduct means making up or falsifying data, manipulating data analyses, or misrepresenting results in research reports. It’s a form of academic fraud.

These actions are committed intentionally and can have serious consequences; research misconduct is not a simple mistake or a point of disagreement but a serious ethical failure.

Anonymity means you don’t know who the participants are, while confidentiality means you know who they are but remove identifying information from your research report. Both are important ethical considerations .

You can only guarantee anonymity by not collecting any personally identifying information—for example, names, phone numbers, email addresses, IP addresses, physical characteristics, photos, or videos.

You can keep data confidential by using aggregate information in your research report, so that you only refer to groups of participants rather than individuals.

Research ethics matter for scientific integrity, human rights and dignity, and collaboration between science and society. These principles make sure that participation in studies is voluntary, informed, and safe.

Ethical considerations in research are a set of principles that guide your research designs and practices. These principles include voluntary participation, informed consent, anonymity, confidentiality, potential for harm, and results communication.

Scientists and researchers must always adhere to a certain code of conduct when collecting data from others .

These considerations protect the rights of research participants, enhance research validity , and maintain scientific integrity.

In multistage sampling , you can use probability or non-probability sampling methods .

For a probability sample, you have to conduct probability sampling at every stage.

You can mix it up by using simple random sampling , systematic sampling , or stratified sampling to select units at different stages, depending on what is applicable and relevant to your study.

Multistage sampling can simplify data collection when you have large, geographically spread samples, and you can obtain a probability sample without a complete sampling frame.

But multistage sampling may not lead to a representative sample, and larger samples are needed for multistage samples to achieve the statistical properties of simple random samples .

These are four of the most common mixed methods designs :

  • Convergent parallel: Quantitative and qualitative data are collected at the same time and analyzed separately. After both analyses are complete, compare your results to draw overall conclusions. 
  • Embedded: Quantitative and qualitative data are collected at the same time, but within a larger quantitative or qualitative design. One type of data is secondary to the other.
  • Explanatory sequential: Quantitative data is collected and analyzed first, followed by qualitative data. You can use this design if you think your qualitative data will explain and contextualize your quantitative findings.
  • Exploratory sequential: Qualitative data is collected and analyzed first, followed by quantitative data. You can use this design if you think the quantitative data will confirm or validate your qualitative findings.

Triangulation in research means using multiple datasets, methods, theories and/or investigators to address a research question. It’s a research strategy that can help you enhance the validity and credibility of your findings.

Triangulation is mainly used in qualitative research , but it’s also commonly applied in quantitative research . Mixed methods research always uses triangulation.

In multistage sampling , or multistage cluster sampling, you draw a sample from a population using smaller and smaller groups at each stage.

This method is often used to collect data from a large, geographically spread group of people in national surveys, for example. You take advantage of hierarchical groupings (e.g., from state to city to neighborhood) to create a sample that’s less expensive and time-consuming to collect data from.

No, the steepness or slope of the line isn’t related to the correlation coefficient value. The correlation coefficient only tells you how closely your data fit on a line, so two datasets with the same correlation coefficient can have very different slopes.

To find the slope of the line, you’ll need to perform a regression analysis .

Correlation coefficients always range between -1 and 1.

The sign of the coefficient tells you the direction of the relationship: a positive value means the variables change together in the same direction, while a negative value means they change together in opposite directions.

The absolute value of a number is equal to the number without its sign. The absolute value of a correlation coefficient tells you the magnitude of the correlation: the greater the absolute value, the stronger the correlation.

These are the assumptions your data must meet if you want to use Pearson’s r :

  • Both variables are on an interval or ratio level of measurement
  • Data from both variables follow normal distributions
  • Your data have no outliers
  • Your data is from a random or representative sample
  • You expect a linear relationship between the two variables

Quantitative research designs can be divided into two main categories:

  • Correlational and descriptive designs are used to investigate characteristics, averages, trends, and associations between variables.
  • Experimental and quasi-experimental designs are used to test causal relationships .

Qualitative research designs tend to be more flexible. Common types of qualitative design include case study , ethnography , and grounded theory designs.

A well-planned research design helps ensure that your methods match your research aims, that you collect high-quality data, and that you use the right kind of analysis to answer your questions, utilizing credible sources . This allows you to draw valid , trustworthy conclusions.

The priorities of a research design can vary depending on the field, but you usually have to specify:

  • Your research questions and/or hypotheses
  • Your overall approach (e.g., qualitative or quantitative )
  • The type of design you’re using (e.g., a survey , experiment , or case study )
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods (e.g., questionnaires , observations)
  • Your data collection procedures (e.g., operationalization , timing and data management)
  • Your data analysis methods (e.g., statistical tests  or thematic analysis )

A research design is a strategy for answering your   research question . It defines your overall approach and determines how you will collect and analyze data.

Questionnaires can be self-administered or researcher-administered.

Self-administered questionnaires can be delivered online or in paper-and-pen formats, in person or through mail. All questions are standardized so that all respondents receive the same questions with identical wording.

Researcher-administered questionnaires are interviews that take place by phone, in-person, or online between researchers and respondents. You can gain deeper insights by clarifying questions for respondents or asking follow-up questions.

You can organize the questions logically, with a clear progression from simple to complex, or randomly between respondents. A logical flow helps respondents process the questionnaire easier and quicker, but it may lead to bias. Randomization can minimize the bias from order effects.

Closed-ended, or restricted-choice, questions offer respondents a fixed set of choices to select from. These questions are easier to answer quickly.

Open-ended or long-form questions allow respondents to answer in their own words. Because there are no restrictions on their choices, respondents can answer in ways that researchers may not have otherwise considered.

A questionnaire is a data collection tool or instrument, while a survey is an overarching research method that involves collecting and analyzing data from people using questionnaires.

The third variable and directionality problems are two main reasons why correlation isn’t causation .

The third variable problem means that a confounding variable affects both variables to make them seem causally related when they are not.

The directionality problem is when two variables correlate and might actually have a causal relationship, but it’s impossible to conclude which variable causes changes in the other.

Correlation describes an association between variables : when one variable changes, so does the other. A correlation is a statistical indicator of the relationship between variables.

Causation means that changes in one variable brings about changes in the other (i.e., there is a cause-and-effect relationship between variables). The two variables are correlated with each other, and there’s also a causal link between them.

While causation and correlation can exist simultaneously, correlation does not imply causation. In other words, correlation is simply a relationship where A relates to B—but A doesn’t necessarily cause B to happen (or vice versa). Mistaking correlation for causation is a common error and can lead to false cause fallacy .

Controlled experiments establish causality, whereas correlational studies only show associations between variables.

  • In an experimental design , you manipulate an independent variable and measure its effect on a dependent variable. Other variables are controlled so they can’t impact the results.
  • In a correlational design , you measure variables without manipulating any of them. You can test whether your variables change together, but you can’t be sure that one variable caused a change in another.

In general, correlational research is high in external validity while experimental research is high in internal validity .

A correlation is usually tested for two variables at a time, but you can test correlations between three or more variables.

A correlation coefficient is a single number that describes the strength and direction of the relationship between your variables.

Different types of correlation coefficients might be appropriate for your data based on their levels of measurement and distributions . The Pearson product-moment correlation coefficient (Pearson’s r ) is commonly used to assess a linear relationship between two quantitative variables.

A correlational research design investigates relationships between two variables (or more) without the researcher controlling or manipulating any of them. It’s a non-experimental type of quantitative research .

A correlation reflects the strength and/or direction of the association between two or more variables.

  • A positive correlation means that both variables change in the same direction.
  • A negative correlation means that the variables change in opposite directions.
  • A zero correlation means there’s no relationship between the variables.

Random error  is almost always present in scientific studies, even in highly controlled settings. While you can’t eradicate it completely, you can reduce random error by taking repeated measurements, using a large sample, and controlling extraneous variables .

You can avoid systematic error through careful design of your sampling , data collection , and analysis procedures. For example, use triangulation to measure your variables using multiple methods; regularly calibrate instruments or procedures; use random sampling and random assignment ; and apply masking (blinding) where possible.

Systematic error is generally a bigger problem in research.

With random error, multiple measurements will tend to cluster around the true value. When you’re collecting data from a large sample , the errors in different directions will cancel each other out.

Systematic errors are much more problematic because they can skew your data away from the true value. This can lead you to false conclusions ( Type I and II errors ) about the relationship between the variables you’re studying.

Random and systematic error are two types of measurement error.

Random error is a chance difference between the observed and true values of something (e.g., a researcher misreading a weighing scale records an incorrect measurement).

Systematic error is a consistent or proportional difference between the observed and true values of something (e.g., a miscalibrated scale consistently records weights as higher than they actually are).

On graphs, the explanatory variable is conventionally placed on the x-axis, while the response variable is placed on the y-axis.

  • If you have quantitative variables , use a scatterplot or a line graph.
  • If your response variable is categorical, use a scatterplot or a line graph.
  • If your explanatory variable is categorical, use a bar graph.

The term “ explanatory variable ” is sometimes preferred over “ independent variable ” because, in real world contexts, independent variables are often influenced by other variables. This means they aren’t totally independent.

Multiple independent variables may also be correlated with each other, so “explanatory variables” is a more appropriate term.

The difference between explanatory and response variables is simple:

  • An explanatory variable is the expected cause, and it explains the results.
  • A response variable is the expected effect, and it responds to other variables.

In a controlled experiment , all extraneous variables are held constant so that they can’t influence the results. Controlled experiments require:

  • A control group that receives a standard treatment, a fake treatment, or no treatment.
  • Random assignment of participants to ensure the groups are equivalent.

Depending on your study topic, there are various other methods of controlling variables .

There are 4 main types of extraneous variables :

  • Demand characteristics : environmental cues that encourage participants to conform to researchers’ expectations.
  • Experimenter effects : unintentional actions by researchers that influence study outcomes.
  • Situational variables : environmental variables that alter participants’ behaviors.
  • Participant variables : any characteristic or aspect of a participant’s background that could affect study results.

An extraneous variable is any variable that you’re not investigating that can potentially affect the dependent variable of your research study.

A confounding variable is a type of extraneous variable that not only affects the dependent variable, but is also related to the independent variable.

In a factorial design, multiple independent variables are tested.

If you test two variables, each level of one independent variable is combined with each level of the other independent variable to create different conditions.

While a between-subjects design has fewer threats to internal validity , it also requires more participants for high statistical power than a within-subjects design .

  • Prevents carryover effects of learning and fatigue.
  • Shorter study duration.
  • Needs larger samples for high power.
  • Uses more resources to recruit participants, administer sessions, cover costs, etc.
  • Individual differences may be an alternative explanation for results.

Yes. Between-subjects and within-subjects designs can be combined in a single study when you have two or more independent variables (a factorial design). In a mixed factorial design, one variable is altered between subjects and another is altered within subjects.

In a between-subjects design , every participant experiences only one condition, and researchers assess group differences between participants in various conditions.

In a within-subjects design , each participant experiences all conditions, and researchers test the same participants repeatedly for differences between conditions.

The word “between” means that you’re comparing different conditions between groups, while the word “within” means you’re comparing different conditions within the same group.

Random assignment is used in experiments with a between-groups or independent measures design. In this research design, there’s usually a control group and one or more experimental groups. Random assignment helps ensure that the groups are comparable.

In general, you should always use random assignment in this type of experimental design when it is ethically possible and makes sense for your study topic.

To implement random assignment , assign a unique number to every member of your study’s sample .

Then, you can use a random number generator or a lottery method to randomly assign each number to a control or experimental group. You can also do so manually, by flipping a coin or rolling a dice to randomly assign participants to groups.

Random selection, or random sampling , is a way of selecting members of a population for your study’s sample.

In contrast, random assignment is a way of sorting the sample into control and experimental groups.

Random sampling enhances the external validity or generalizability of your results, while random assignment improves the internal validity of your study.

In experimental research, random assignment is a way of placing participants from your sample into different groups using randomization. With this method, every member of the sample has a known or equal chance of being placed in a control group or an experimental group.

“Controlling for a variable” means measuring extraneous variables and accounting for them statistically to remove their effects on other variables.

Researchers often model control variable data along with independent and dependent variable data in regression analyses and ANCOVAs . That way, you can isolate the control variable’s effects from the relationship between the variables of interest.

Control variables help you establish a correlational or causal relationship between variables by enhancing internal validity .

If you don’t control relevant extraneous variables , they may influence the outcomes of your study, and you may not be able to demonstrate that your results are really an effect of your independent variable .

A control variable is any variable that’s held constant in a research study. It’s not a variable of interest in the study, but it’s controlled because it could influence the outcomes.

Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

Mediators are part of the causal pathway of an effect, and they tell you how or why an effect takes place. Moderators usually help you judge the external validity of your study by identifying the limitations of when the relationship between variables holds.

If something is a mediating variable :

  • It’s caused by the independent variable .
  • It influences the dependent variable
  • When it’s taken into account, the statistical correlation between the independent and dependent variables is higher than when it isn’t considered.

A confounder is a third variable that affects variables of interest and makes them seem related when they are not. In contrast, a mediator is the mechanism of a relationship between two variables: it explains the process by which they are related.

A mediator variable explains the process through which two variables are related, while a moderator variable affects the strength and direction of that relationship.

There are three key steps in systematic sampling :

  • Define and list your population , ensuring that it is not ordered in a cyclical or periodic order.
  • Decide on your sample size and calculate your interval, k , by dividing your population by your target sample size.
  • Choose every k th member of the population as your sample.

Systematic sampling is a probability sampling method where researchers select members of the population at a regular interval – for example, by selecting every 15th person on a list of the population. If the population is in a random order, this can imitate the benefits of simple random sampling .

Yes, you can create a stratified sample using multiple characteristics, but you must ensure that every participant in your study belongs to one and only one subgroup. In this case, you multiply the numbers of subgroups for each characteristic to get the total number of groups.

For example, if you were stratifying by location with three subgroups (urban, rural, or suburban) and marital status with five subgroups (single, divorced, widowed, married, or partnered), you would have 3 x 5 = 15 subgroups.

You should use stratified sampling when your sample can be divided into mutually exclusive and exhaustive subgroups that you believe will take on different mean values for the variable that you’re studying.

Using stratified sampling will allow you to obtain more precise (with lower variance ) statistical estimates of whatever you are trying to measure.

For example, say you want to investigate how income differs based on educational attainment, but you know that this relationship can vary based on race. Using stratified sampling, you can ensure you obtain a large enough sample from each racial group, allowing you to draw more precise conclusions.

In stratified sampling , researchers divide subjects into subgroups called strata based on characteristics that they share (e.g., race, gender, educational attainment).

Once divided, each subgroup is randomly sampled using another probability sampling method.

Cluster sampling is more time- and cost-efficient than other probability sampling methods , particularly when it comes to large samples spread across a wide geographical area.

However, it provides less statistical certainty than other methods, such as simple random sampling , because it is difficult to ensure that your clusters properly represent the population as a whole.

There are three types of cluster sampling : single-stage, double-stage and multi-stage clustering. In all three types, you first divide the population into clusters, then randomly select clusters for use in your sample.

  • In single-stage sampling , you collect data from every unit within the selected clusters.
  • In double-stage sampling , you select a random sample of units from within the clusters.
  • In multi-stage sampling , you repeat the procedure of randomly sampling elements from within the clusters until you have reached a manageable sample.

Cluster sampling is a probability sampling method in which you divide a population into clusters, such as districts or schools, and then randomly select some of these clusters as your sample.

The clusters should ideally each be mini-representations of the population as a whole.

If properly implemented, simple random sampling is usually the best sampling method for ensuring both internal and external validity . However, it can sometimes be impractical and expensive to implement, depending on the size of the population to be studied,

If you have a list of every member of the population and the ability to reach whichever members are selected, you can use simple random sampling.

The American Community Survey  is an example of simple random sampling . In order to collect detailed data on the population of the US, the Census Bureau officials randomly select 3.5 million households per year and use a variety of methods to convince them to fill out the survey.

Simple random sampling is a type of probability sampling in which the researcher randomly selects a subset of participants from a population . Each member of the population has an equal chance of being selected. Data is then collected from as large a percentage as possible of this random subset.

Quasi-experimental design is most useful in situations where it would be unethical or impractical to run a true experiment .

Quasi-experiments have lower internal validity than true experiments, but they often have higher external validity  as they can use real-world interventions instead of artificial laboratory settings.

A quasi-experiment is a type of research design that attempts to establish a cause-and-effect relationship. The main difference with a true experiment is that the groups are not randomly assigned.

Blinding is important to reduce research bias (e.g., observer bias , demand characteristics ) and ensure a study’s internal validity .

If participants know whether they are in a control or treatment group , they may adjust their behavior in ways that affect the outcome that researchers are trying to measure. If the people administering the treatment are aware of group assignment, they may treat participants differently and thus directly or indirectly influence the final results.

  • In a single-blind study , only the participants are blinded.
  • In a double-blind study , both participants and experimenters are blinded.
  • In a triple-blind study , the assignment is hidden not only from participants and experimenters, but also from the researchers analyzing the data.

Blinding means hiding who is assigned to the treatment group and who is assigned to the control group in an experiment .

A true experiment (a.k.a. a controlled experiment) always includes at least one control group that doesn’t receive the experimental treatment.

However, some experiments use a within-subjects design to test treatments without a control group. In these designs, you usually compare one group’s outcomes before and after a treatment (instead of comparing outcomes between different groups).

For strong internal validity , it’s usually best to include a control group if possible. Without a control group, it’s harder to be certain that the outcome was caused by the experimental treatment and not by other variables.

An experimental group, also known as a treatment group, receives the treatment whose effect researchers wish to study, whereas a control group does not. They should be identical in all other ways.

Individual Likert-type questions are generally considered ordinal data , because the items have clear rank order, but don’t have an even distribution.

Overall Likert scale scores are sometimes treated as interval data. These scores are considered to have directionality and even spacing between them.

The type of data determines what statistical tests you should use to analyze your data.

A Likert scale is a rating scale that quantitatively assesses opinions, attitudes, or behaviors. It is made up of 4 or more questions that measure a single attitude or trait when response scores are combined.

To use a Likert scale in a survey , you present participants with Likert-type questions or statements, and a continuum of items, usually with 5 or 7 possible responses, to capture their degree of agreement.

In scientific research, concepts are the abstract ideas or phenomena that are being studied (e.g., educational achievement). Variables are properties or characteristics of the concept (e.g., performance at school), while indicators are ways of measuring or quantifying variables (e.g., yearly grade reports).

The process of turning abstract concepts into measurable variables and indicators is called operationalization .

There are various approaches to qualitative data analysis , but they all share five steps in common:

  • Prepare and organize your data.
  • Review and explore your data.
  • Develop a data coding system.
  • Assign codes to the data.
  • Identify recurring themes.

The specifics of each step depend on the focus of the analysis. Some common approaches include textual analysis , thematic analysis , and discourse analysis .

There are five common approaches to qualitative research :

  • Grounded theory involves collecting data in order to develop new theories.
  • Ethnography involves immersing yourself in a group or organization to understand its culture.
  • Narrative research involves interpreting stories to understand how people make sense of their experiences and perceptions.
  • Phenomenological research involves investigating phenomena through people’s lived experiences.
  • Action research links theory and practice in several cycles to drive innovative changes.

Hypothesis testing is a formal procedure for investigating our ideas about the world using statistics. It is used by scientists to test specific predictions, called hypotheses , by calculating how likely it is that a pattern or relationship between variables could have arisen by chance.

Operationalization means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioral avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalize the variables that you want to measure.

When conducting research, collecting original data has significant advantages:

  • You can tailor data collection to your specific research aims (e.g. understanding the needs of your consumers or user testing your website)
  • You can control and standardize the process for high reliability and validity (e.g. choosing appropriate measurements and sampling methods )

However, there are also some drawbacks: data collection can be time-consuming, labor-intensive and expensive. In some cases, it’s more efficient to use secondary data that has already been collected by someone else, but the data might be less reliable.

Data collection is the systematic process by which observations or measurements are gathered in research. It is used in many different contexts by academics, governments, businesses, and other organizations.

There are several methods you can use to decrease the impact of confounding variables on your research: restriction, matching, statistical control and randomization.

In restriction , you restrict your sample by only including certain subjects that have the same values of potential confounding variables.

In matching , you match each of the subjects in your treatment group with a counterpart in the comparison group. The matched subjects have the same values on any potential confounding variables, and only differ in the independent variable .

In statistical control , you include potential confounders as variables in your regression .

In randomization , you randomly assign the treatment (or independent variable) in your study to a sufficiently large number of subjects, which allows you to control for all potential confounding variables.

A confounding variable is closely related to both the independent and dependent variables in a study. An independent variable represents the supposed cause , while the dependent variable is the supposed effect . A confounding variable is a third variable that influences both the independent and dependent variables.

Failing to account for confounding variables can cause you to wrongly estimate the relationship between your independent and dependent variables.

To ensure the internal validity of your research, you must consider the impact of confounding variables. If you fail to account for them, you might over- or underestimate the causal relationship between your independent and dependent variables , or even find a causal relationship where none exists.

Yes, but including more than one of either type requires multiple research questions .

For example, if you are interested in the effect of a diet on health, you can use multiple measures of health: blood sugar, blood pressure, weight, pulse, and many more. Each of these is its own dependent variable with its own research question.

You could also choose to look at the effect of exercise levels as well as diet, or even the additional effect of the two combined. Each of these is a separate independent variable .

To ensure the internal validity of an experiment , you should only change one independent variable at a time.

No. The value of a dependent variable depends on an independent variable, so a variable cannot be both independent and dependent at the same time. It must be either the cause or the effect, not both!

You want to find out how blood sugar levels are affected by drinking diet soda and regular soda, so you conduct an experiment .

  • The type of soda – diet or regular – is the independent variable .
  • The level of blood sugar that you measure is the dependent variable – it changes depending on the type of soda.

Determining cause and effect is one of the most important parts of scientific research. It’s essential to know which is the cause – the independent variable – and which is the effect – the dependent variable.

In non-probability sampling , the sample is selected based on non-random criteria, and not every member of the population has a chance of being included.

Common non-probability sampling methods include convenience sampling , voluntary response sampling, purposive sampling , snowball sampling, and quota sampling .

Probability sampling means that every member of the target population has a known chance of being included in the sample.

Probability sampling methods include simple random sampling , systematic sampling , stratified sampling , and cluster sampling .

Using careful research design and sampling procedures can help you avoid sampling bias . Oversampling can be used to correct undercoverage bias .

Some common types of sampling bias include self-selection bias , nonresponse bias , undercoverage bias , survivorship bias , pre-screening or advertising bias, and healthy user bias.

Sampling bias is a threat to external validity – it limits the generalizability of your findings to a broader group of people.

A sampling error is the difference between a population parameter and a sample statistic .

A statistic refers to measures about the sample , while a parameter refers to measures about the population .

Populations are used when a research question requires data from every member of the population. This is usually only feasible when the population is small and easily accessible.

Samples are used to make inferences about populations . Samples are easier to collect data from because they are practical, cost-effective, convenient, and manageable.

There are seven threats to external validity : selection bias , history, experimenter effect, Hawthorne effect , testing effect, aptitude-treatment and situation effect.

The two types of external validity are population validity (whether you can generalize to other groups of people) and ecological validity (whether you can generalize to other situations and settings).

The external validity of a study is the extent to which you can generalize your findings to different groups of people, situations, and measures.

Cross-sectional studies cannot establish a cause-and-effect relationship or analyze behavior over a period of time. To investigate cause and effect, you need to do a longitudinal study or an experimental study .

Cross-sectional studies are less expensive and time-consuming than many other types of study. They can provide useful insights into a population’s characteristics and identify correlations for further research.

Sometimes only cross-sectional data is available for analysis; other times your research question may only require a cross-sectional study to answer it.

Longitudinal studies can last anywhere from weeks to decades, although they tend to be at least a year long.

The 1970 British Cohort Study , which has collected data on the lives of 17,000 Brits since their births in 1970, is one well-known example of a longitudinal study .

Longitudinal studies are better to establish the correct sequence of events, identify changes over time, and provide insight into cause-and-effect relationships, but they also tend to be more expensive and time-consuming than other types of studies.

Longitudinal studies and cross-sectional studies are two different types of research design . In a cross-sectional study you collect data from a population at a specific point in time; in a longitudinal study you repeatedly collect data from the same sample over an extended period of time.

Longitudinal study Cross-sectional study
observations Observations at a in time
Observes the multiple times Observes (a “cross-section”) in the population
Follows in participants over time Provides of society at a given point

There are eight threats to internal validity : history, maturation, instrumentation, testing, selection bias , regression to the mean, social interaction and attrition .

Internal validity is the extent to which you can be confident that a cause-and-effect relationship established in a study cannot be explained by other factors.

In mixed methods research , you use both qualitative and quantitative data collection and analysis methods to answer your research question .

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts and meanings, use qualitative methods .
  • If you want to analyze a large amount of readily-available data, use secondary data. If you want data specific to your purposes with control over how it is generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

A confounding variable , also called a confounder or confounding factor, is a third variable in a study examining a potential cause-and-effect relationship.

A confounding variable is related to both the supposed cause and the supposed effect of the study. It can be difficult to separate the true effect of the independent variable from the effect of the confounding variable.

In your research design , it’s important to identify potential confounding variables and plan how you will reduce their impact.

Discrete and continuous variables are two types of quantitative variables :

  • Discrete variables represent counts (e.g. the number of objects in a collection).
  • Continuous variables represent measurable amounts (e.g. water volume or weight).

Quantitative variables are any variables where the data represent amounts (e.g. height, weight, or age).

Categorical variables are any variables where the data represent groups. This includes rankings (e.g. finishing places in a race), classifications (e.g. brands of cereal), and binary outcomes (e.g. coin flips).

You need to know what type of variables you are working with to choose the right statistical test for your data and interpret your results .

You can think of independent and dependent variables in terms of cause and effect: an independent variable is the variable you think is the cause , while a dependent variable is the effect .

In an experiment, you manipulate the independent variable and measure the outcome in the dependent variable. For example, in an experiment about the effect of nutrients on crop growth:

  • The  independent variable  is the amount of nutrients added to the crop field.
  • The  dependent variable is the biomass of the crops at harvest time.

Defining your variables, and deciding how you will manipulate and measure them, is an important part of experimental design .

Experimental design means planning a set of procedures to investigate a relationship between variables . To design a controlled experiment, you need:

  • A testable hypothesis
  • At least one independent variable that can be precisely manipulated
  • At least one dependent variable that can be precisely measured

When designing the experiment, you decide:

  • How you will manipulate the variable(s)
  • How you will control for any potential confounding variables
  • How many subjects or samples will be included in the study
  • How subjects will be assigned to treatment levels

Experimental design is essential to the internal and external validity of your experiment.

I nternal validity is the degree of confidence that the causal relationship you are testing is not influenced by other factors or variables .

External validity is the extent to which your results can be generalized to other contexts.

The validity of your experiment depends on your experimental design .

Reliability and validity are both about how well a method measures something:

  • Reliability refers to the  consistency of a measure (whether the results can be reproduced under the same conditions).
  • Validity   refers to the  accuracy of a measure (whether the results really do represent what they are supposed to measure).

If you are doing experimental research, you also have to consider the internal and external validity of your experiment.

A sample is a subset of individuals from a larger population . Sampling means selecting the group that you will actually collect data from in your research. For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

In statistics, sampling allows you to test a hypothesis about the characteristics of a population.

Quantitative research deals with numbers and statistics, while qualitative research deals with words and meanings.

Quantitative methods allow you to systematically measure variables and test hypotheses . Qualitative methods allow you to explore concepts and experiences in more detail.

Methodology refers to the overarching strategy and rationale of your research project . It involves studying the methods used in your field and the theories or principles behind them, in order to develop an approach that matches your objectives.

Methods are the specific tools and procedures you use to collect and analyze data (for example, experiments, surveys , and statistical tests ).

In shorter scientific papers, where the aim is to report the findings of a specific study, you might simply describe what you did in a methods section .

In a longer or more complex research project, such as a thesis or dissertation , you will probably include a methodology section , where you explain your approach to answering the research questions and cite relevant sources to support your choice of methods.

Ask our team

Want to contact us directly? No problem.  We  are always here for you.

Support team - Nina

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

Advantages and Disadvantages of Within-Subjects Designs

As you might have already noticed, within-subjects designs are often used in experimental situations in which a researcher wants to compare different treatment conditions and also to investigate changes occurring over time. They have some distinct advantages over between-subjects designs. Typically, within-subjects designs require fewer subjects than between-subjects designs. Within-subjects designs control for within group differences between levels of the independent variables because each level consists of the exact same subjects. This equalizes variability within levels of the independent variable so that we know that any differences between levels are due to the treatment itself. Each subject in the study serves as his or her own control or baseline.

However, there are also some disadvantages to be aware of with within-subjects designs. In many cases, it is possible that subjects' experiences in one condition influence their behaviour in subsequent levels or conditions. Subjects may experience order effects in that there is a change in the subject's behavior or performance that is related to experience over time in a research study ( McBurney & White, 2004) . For example, in our deep breathing and fear of public speaking example, it is possible that participants may perform better in the deep breathing condition, not because of the effects of deep breathing itself, but because with repeated exposure to public speaking people naturally become more comfortable doing it. Therefore, we would have seen lower heart rates in the second condition than in the first, regardless of whether participants were taught the deep breathing technique.

In within-subjects designs, sequence effects can also occur. While order effects refer to changes due to time or order of presentation of the conditions, sequence effects are “changes in the subjects' performance resulting from interactions among the conditions themselves” ( McBurney & White, 2004, p. 270 ). For example, suppose we had participants evaluate the pleasantness of flavor of a number of brands of orange and grapefruit juice. When tasting the first sample of orange juice, the participants have only past experiences as their comparison point. However, when tasting the second sample of grapefruit juice, the participants' exposure to the first sample will influence their perception of the second sample. That is, they are more likely to contrast the sourness of the second grapefruit sample to the sweetness of the first sample and their perception of its pleasantness will be affected by the degree to which the participants liked or did not like the first juice. Therefore, exposure to the first condition influences the participants' perception and behaviour in the second condition.

Typically, researchers will try to minimize sequence and order effects through counterbalancing . This is done by arranging the sequence of conditions for individual subjects so that subjects will experience the various conditions in different orders. For example, if taste testing two juices, have half the participants taste the orange juice first and the grapefruit juice second. The other half of the participants would test the juices in the opposite order (grapefruit first, and orange second).

There are sometimes situations in which order or sequence effects cannot be controlled for through counterbalancing or other techniques. For example, in some situations exposure to one condition may permanently change a subject and these changes can not be reversed. For example, we could counterbalance our independent variable in our fear of public speaking example so that half the participants received the control condition first and the deep breathing condition second and half of the participants received the conditions in the reverse order. However, it could be argued that after learning deep breathing techniques, individuals will tend to engage in deep breathing automatically, without consciously thinking about it, even when instructed not to do so. In other words, in some situations, it might not be possible to reverse the effects of treatment and, therefore, it does not make sense to expose subjects to the control condition after they have been in the treatment condition. In such situations, the use of a within-subjects design is not recommended and the use of between-subjects designs or other methods of researching the phenomenon must be explored.

IMAGES

  1. PPT

    single subject research design advantages and disadvantages

  2. single subject research design recommendations for levels of evidence

    single subject research design advantages and disadvantages

  3. Single-Subject Experimental Design Advantages vs. Group Research

    single subject research design advantages and disadvantages

  4. Research designs, advantages, and disadvantages.

    single subject research design advantages and disadvantages

  5. Summary of the Study designs their advantages and disadvantages

    single subject research design advantages and disadvantages

  6. PPT

    single subject research design advantages and disadvantages

VIDEO

  1. SERP 590 SSR Quality Indicators.mov

  2. Methods 20

  3. Single Subject Research Design

  4. BCBA Task List 5: D 4

  5. SERP 590: Procedures and Data Collection

  6. BCBA Task List 5: D 5

COMMENTS

  1. Advantages and Disadvantages of Using a Single-Subject Research Design

    However, in some cases researchers will use an alternative method called single-subject research design. Single-Subject Methodology Single Subject Research Designs (SSRDs) work by designing an experiment where, instead of a control group of subjects and an experimental group of subjects whose results are compared to one another, the control and ...

  2. D-4: Describe the advantages of single subject experimental designs

    Single subject experimental designs. Definition: Single subject experimental designs are different in several fundamental ways. The most obvious way is that comparisons are made within each subject. This kind of research design is therefore called within subjects research. The most obvious (and most experimentally weak) way to use an individual ...

  3. Single-Subject Experimental Design for Evidence-Based Practice

    Single-subject experimental designs (SSEDs) represent an important tool in the development and implementation of evidence-based practice in communication sciences and disorders. The purpose of this article is to review the strategies and tactics of SSEDs and their application in speech-language pathology research.

  4. The benefits of single-subject research designs and multi

    2. Complimentary research designs. Though the completely randomized group design is considered by many to be the gold standard of evidence (Meldrum, 2000), its limitations as well as ethical and logistical execution difficulties have been noted: e.g., blindness to group heterogeneity, problematic application to individual cases, and experimental weakness in the context of other often-neglected ...

  5. Single-Subject Research Designs

    Many of these features are illustrated in Figure 10.2, which shows the results of a generic single-subject study. First, the dependent variable (represented on the y -axis of the graph) is measured repeatedly over time (represented by the x -axis) at regular intervals. Second, the study is divided into distinct phases, and the participant is ...

  6. PDF Chapter 14. Experimental Designs: Single-Subject Designs and Time

    Advantages of the single-subject approach Those who use the single-subject approach find it both a powerful and satisfying research method. One reason for this is that the method provides feedback quickly to the investigator about the effects of the treatment conditions. The experimenter knows relatively soon whether the treatment is working or not

  7. 10.1 Overview of Single-Subject Research

    What Is Single-Subject Research? Single-subject research is a type of quantitative research that involves studying in detail the behavior of each of a small number of participants. Note that the term single-subject does not mean that only one participant is studied; it is more typical for there to be somewhere between two and 10 participants. (This is why single-subject research designs are ...

  8. Single-Subject Experimental Design: An Overview

    Myth 1: Single-subject experiments only have one participant. Obviously, it requires only one subject, one participant. But that's a misnomer to think that single-subject is just about one participant. You can have as many as twenty or thirty. Myth 2: Single-subject experiments only require one pre-test/post-test.

  9. The Application of the Single Subject Design

    The single subject design is a family of designs that share fundamental concepts and methodologies. The basic components of a single subject design are similar to other research designs, which include the measurement of a variable of interest or outcome variable, and the effect of an intervention on this variable.

  10. Use of the single subject design for practice based primary care research

    Abstract. The use of a single subject research design is proposed for practice based primary care research. An overview of the rationale of the design, an introduction to the methodology, strengths, limitations, a sample of recent literature citations, a working example, and possible clinical applications are presented.

  11. Single Subject Research

    Single subject research designs are "weak when it comes to external validity….Studies involving single-subject designs that show a particular treatment to be effective in changing behavior must rely on replication-across individuals rather than groups-if such results are be found worthy of generalization" (Fraenkel & Wallen, 2006, p ...

  12. Single Subject Experimental Designs

    When choosing a single-subject experimental design, ABA researchers are looking for certain characteristics that fit their study. First, individuals serve as their own control in single subject research. In other words, the results of each condition are compared to the participant's own data. If 3 people participate in the study, each will ...

  13. (PDF) Single-subject designs in special education: Advantages and

    to assemble equivalent groups to compare and study. (Parker, Grimmett and Summers, 2008). Single-subject designs provide the special education field. with an alternative to group designs (Engel ...

  14. 10.2 Single-Subject Research Designs

    Figure 10.3 Results of a Generic Single-Subject Study Illustrating Several Principles of Single-Subject Research. Another important aspect of single-subject research is that the change from one condition to the next does not usually occur after a fixed amount of time or number of observations. Instead, it depends on the participant's behavior.

  15. Single-Subject vs. Group Research Designs

    This blog post will cover D-4 of Section 1 in the BCBA/BCaBA Fifth Edition Task List. You will learn about how to "describe the advantages of single-subject experimental designs compared to group designs" (Behavior Analy...

  16. Single-Subject Experiments

    Single-Subject Experiments. Advantages. Group means could conceal patterns that appear in individuals' data. Big effects - only clinically significant effects are likely to be found. Ethical and practical advantages (eg; can not withhold treatment; too few subjects) Flexibility. Disadvantages.

  17. PDF The benefits of single-subject research designs and

    Single-subject designs compare experimental to control conditions repeatedly over time within the same individual. Like group designs with within-subject comparisons, single- subject designs can control for individual differences, which remain constant. However, single-subject designs take individual control to a new level.

  18. Within-Subjects Design: Examples, Pros & Cons

    References. A within-subjects design is an experimental design in which the same group of participants is exposed to all independent variable levels. This design controls for individual differences and often requires fewer participants. A within-subjects design allows researchers to assign test participants to different treatment groups.

  19. Single Subject Research: Applications in Educational Settings

    Conducting Single Subject Research: Issues and Procedures. Chapter 1. Historical Perspectives and Important Concepts in Single Subject Research ... Verification, and Replication for A-B-A-B Designs; 6-5. Advantages and Disadvantages of Withdrawal Designs. 6-5a. Advantages; 6-5b. Disadvantages; 6-6. Adaptations of the Typical Withdrawal Design ...

  20. What are the pros and cons of a within-subjects design?

    While a between-subjects design has fewer threats to internal validity, it also requires more participants for high statistical power than a within-subjects design. Advantages: Prevents carryover effects of learning and fatigue. Shorter study duration. Disadvantages: Needs larger samples for high power.

  21. The advantages and disadvantages of single case and group study design

    I know what you are doing: A neurophysiological study// Neuron. 2001, Vol. 31 (1), p. 155-165. In this essay, the advantages and disadvantages of single case and group study research design methodologies are discussed. The arguments supporting one or the other study design are introduced relying on most prominent scientific opinions in the field.

  22. Single Subject Research Design Advantages and Disadvantages

    Single-subject research design involves a single subject or small number of subjects serving as their own control. It has advantages such as allowing experiments with just one or two subjects to save time, giving full concentration on each subject, and controlling extraneous variables. However, it also has disadvantages like potential carry-over effects from previous phases, order effects from ...

  23. Advantages and Disadvantages of Within-Subjects Designs

    However, there are also some disadvantages to be aware of with within-subjects designs. In many cases, it is possible that subjects' experiences in one condition influence their behaviour in subsequent levels or conditions. Subjects may experience order effects in that there is a change in the subject's behavior or performance that is related ...