Solving Inequalities

Sometimes we need to solve Inequalities like these:

> 2
< 28
x − 1
7

Our aim is to have x (or whatever the variable is) on its own on the left of the inequality sign:

Something like:   x < 5
or:   y ≥ 11

We call that "solved".

Example: x + 2 > 12

Subtract 2 from both sides:

x + 2 − 2 > 12 − 2

x > 10

How to Solve

Solving inequalities is very like solving equations , we do most of the same things ...

... but we must also pay attention to the direction of the inequality .

Some things can change the direction !

< becomes >

> becomes <

≤ becomes ≥

≥ becomes ≤

Safe Things To Do

These things do not affect the direction of the inequality:

  • Add (or subtract) a number from both sides
  • Multiply (or divide) both sides by a positive number
  • Simplify a side

Example: 3x < 7+3

We can simplify 7+3 without affecting the inequality:

But these things do change the direction of the inequality ("<" becomes ">" for example):

  • Multiply (or divide) both sides by a negative number
  • Swapping left and right hand sides

Example: 2y+7 < 12

When we swap the left and right hand sides, we must also change the direction of the inequality :

12 > 2y+7

Here are the details:

Adding or Subtracting a Value

We can often solve inequalities by adding (or subtracting) a number from both sides (just as in Introduction to Algebra ), like this:

Example: x + 3 < 7

If we subtract 3 from both sides, we get:

x + 3 − 3 < 7 − 3    

And that is our solution: x < 4

In other words, x can be any value less than 4.

What did we do?

We went from this:

 

To this:

   

x+3 < 7

 

x < 4

         

And that works well for adding and subtracting , because if we add (or subtract) the same amount from both sides, it does not affect the inequality

Example: Alex has more coins than Billy. If both Alex and Billy get three more coins each, Alex will still have more coins than Billy.

What If I Solve It, But "x" Is On The Right?

No matter, just swap sides, but reverse the sign so it still "points at" the correct value!

Example: 12 < x + 5

If we subtract 5 from both sides, we get:

12 − 5 < x + 5 − 5    

That is a solution!

But it is normal to put "x" on the left hand side ...

... so let us flip sides (and the inequality sign!):

Do you see how the inequality sign still "points at" the smaller value (7) ?

And that is our solution: x > 7

Note: "x" can be on the right, but people usually like to see it on the left hand side.

Multiplying or Dividing by a Value

Another thing we do is multiply or divide both sides by a value (just as in Algebra - Multiplying ).

But we need to be a bit more careful (as you will see).

Positive Values

Everything is fine if we want to multiply or divide by a positive number :

Example: 3y < 15

If we divide both sides by 3 we get:

3y /3 < 15 /3

And that is our solution: y < 5

Negative Values

When we multiply or divide by a
we must the inequality.

Well, just look at the number line!

For example, from 3 to 7 is an increase , but from −3 to −7 is a decrease.

−7 < −3 7 > 3

See how the inequality sign reverses (from < to >) ?

Let us try an example:

Example: −2y < −8

Let us divide both sides by −2 ... and reverse the inequality !

−2y < −8

−2y /−2 > −8 /−2

And that is the correct solution: y > 4

(Note that I reversed the inequality on the same line I divided by the negative number.)

So, just remember:

When multiplying or dividing by a negative number, reverse the inequality

Multiplying or Dividing by Variables

Here is another (tricky!) example:

Example: bx < 3b

It seems easy just to divide both sides by b , which gives us:

... but wait ... if b is negative we need to reverse the inequality like this:

But we don't know if b is positive or negative, so we can't answer this one !

To help you understand, imagine replacing b with 1 or −1 in the example of bx < 3b :

  • if b is 1 , then the answer is x < 3
  • but if b is −1 , then we are solving −x < −3 , and the answer is x > 3

The answer could be x < 3 or x > 3 and we can't choose because we don't know b .

Do not try dividing by a variable to solve an inequality (unless you know the variable is always positive, or always negative).

A Bigger Example

Example: x−3 2 < −5.

First, let us clear out the "/2" by multiplying both sides by 2.

Because we are multiplying by a positive number, the inequalities will not change.

x−3 2 ×2 < −5  ×2  

x−3 < −10

Now add 3 to both sides:

x−3 + 3 < −10 + 3    

And that is our solution: x < −7

Two Inequalities At Once!

How do we solve something with two inequalities at once?

Example: −2 < 6−2x 3 < 4

First, let us clear out the "/3" by multiplying each part by 3.

Because we are multiplying by a positive number, the inequalities don't change:

−6 < 6−2x < 12

−12 < −2x < 6

Now divide each part by 2 (a positive number, so again the inequalities don't change):

−6 < −x < 3

Now multiply each part by −1. Because we are multiplying by a negative number, the inequalities change direction .

6 > x > −3

And that is the solution!

But to be neat it is better to have the smaller number on the left, larger on the right. So let us swap them over (and make sure the inequalities point correctly):

−3 < x < 6

  • Many simple inequalities can be solved by adding, subtracting, multiplying or dividing both sides until you are left with the variable on its own.
  • Multiplying or dividing both sides by a negative number
  • Don't multiply or divide by a variable (unless you know it is always positive or always negative)

If you're seeing this message, it means we're having trouble loading external resources on our website.

If you're behind a web filter, please make sure that the domains *.kastatic.org and *.kasandbox.org are unblocked.

To log in and use all the features of Khan Academy, please enable JavaScript in your browser.

Unit 2: Solving equations & inequalities

About this unit.

There are lots of strategies we can use to solve equations. Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

Linear equations with variables on both sides

  • Why we do the same thing to both sides: Variable on both sides (Opens a modal)
  • Intro to equations with variables on both sides (Opens a modal)
  • Equations with variables on both sides: 20-7x=6x-6 (Opens a modal)
  • Equation with variables on both sides: fractions (Opens a modal)
  • Equation with the variable in the denominator (Opens a modal)
  • Equations with variables on both sides Get 3 of 4 questions to level up!
  • Equations with variables on both sides: decimals & fractions Get 3 of 4 questions to level up!

Linear equations with parentheses

  • Equations with parentheses (Opens a modal)
  • Reasoning with linear equations (Opens a modal)
  • Multi-step equations review (Opens a modal)
  • Equations with parentheses Get 3 of 4 questions to level up!
  • Equations with parentheses: decimals & fractions Get 3 of 4 questions to level up!
  • Reasoning with linear equations Get 3 of 4 questions to level up!

Analyzing the number of solutions to linear equations

  • Number of solutions to equations (Opens a modal)
  • Worked example: number of solutions to equations (Opens a modal)
  • Creating an equation with no solutions (Opens a modal)
  • Creating an equation with infinitely many solutions (Opens a modal)
  • Number of solutions to equations Get 3 of 4 questions to level up!
  • Number of solutions to equations challenge Get 3 of 4 questions to level up!

Linear equations with unknown coefficients

  • Linear equations with unknown coefficients (Opens a modal)
  • Why is algebra important to learn? (Opens a modal)
  • Linear equations with unknown coefficients Get 3 of 4 questions to level up!

Multi-step inequalities

  • Inequalities with variables on both sides (Opens a modal)
  • Inequalities with variables on both sides (with parentheses) (Opens a modal)
  • Multi-step inequalities (Opens a modal)
  • Using inequalities to solve problems (Opens a modal)
  • Multi-step linear inequalities Get 3 of 4 questions to level up!
  • Using inequalities to solve problems Get 3 of 4 questions to level up!

Compound inequalities

  • Compound inequalities: OR (Opens a modal)
  • Compound inequalities: AND (Opens a modal)
  • A compound inequality with no solution (Opens a modal)
  • Double inequalities (Opens a modal)
  • Compound inequalities examples (Opens a modal)
  • Compound inequalities review (Opens a modal)
  • Solving equations & inequalities: FAQ (Opens a modal)
  • Compound inequalities Get 3 of 4 questions to level up!

High Impact Tutoring Built By Math Experts

Personalized standards-aligned one-on-one math tutoring for schools and districts

In order to access this I need to be confident with:

Solving inequalities

Here you will learn about solving inequalities, including how to solve linear inequalities, identify integers in the solution set, and represent solutions on a number line.

Students will first learn about solving simple inequalities as part of expressions and equations in 6th grade math and expand that knowledge in 7th grade math.

What is solving inequalities?

Solving inequalities allows you to calculate the values of an unknown variable in an inequality.

Solving inequalities is similar to solving equations, but where an equation has one unique solution, an inequality has a range of solutions.

In order to solve an inequality, you need to balance the inequality on each side of the inequality sign in the same way as you would balance an equation on each side of the equal sign. Solutions can be integers, decimals, positive numbers, or negative numbers.

For example,

Solve

\begin{aligned} 2x + 1 &= 9 \\ 2x &= 8 \\ x&= 4 \end{aligned}

4 is the only solution to this
equation.

Solve

\begin{aligned} 2x + 1 &< 9 \\ 2x &< 8 \\ x&< 4 \end{aligned}

x can be any value that is less
than 4.

This of the
For example,

\begin{aligned} 1 - 2x &< 9 \\ -2x &< 8 \\ x&> -4 \end{aligned}

x can be any value that is greater than -4.

What is solving inequalities?

[FREE] Solving Inequalities Worksheet (Grade 7)

Use this worksheet to check your 7th grade students’ understanding of solving inequalities. 15 questions with answers to identify areas of strength and support!

Common Core State Standards

How does this relate to 6th grade and 7th grade math?

  • Grade 6 – Expressions and Equations (6.EE.B.8) Write an inequality of the form x > c or x < c to represent a constraint or condition in a real-world or mathematical problem. Recognize that inequalities of the form x > c or x < c have infinitely many solutions; represent solutions of such inequalities on number line diagrams.
  • Grade 7 – Expressions and Equations (7.EE.4b) Solve word problems leading to inequalities of the form px + q > r or px + q < r, where p, q, and r are specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid \$50 per week plus \$3 per sale. This week you want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and describe the solutions.

How to solve inequalities

In order to solve inequalities:

Rearrange the inequality so that all the unknowns are on one side of the inequality sign.

Rearrange the inequality by dividing by the \textbf{x} coefficient so that \textbf{‘x’} is isolated.

Write your solution with the inequality symbol.

Solving linear inequalities examples

Example 1: solving linear inequalities.

4 x+6<26

In this case you are subtracting 6 from both sides.

\begin{aligned} 4x+6&<26\\ 4x&<20 \end{aligned}

This leaves 4x on the left side of the inequality sign and 20 on the right side.

2 Rearrange the inequality by dividing by the \textbf{x} coefficient so that \textbf{‘x’} is isolated.

In this case you need to divide both sides by 4.

\begin{aligned} 4x&<20\\ x&<5 \end{aligned}

This leaves x on the left side of the inequality sign and 5 on the right side.

3 Write your solution with the inequality symbol.

Any value less than 5 satisfies the inequality.

Example 2: solving linear inequalities

5x-4 \geq 26

In this case you need to add 4 to both sides.

\begin{aligned} 5x-4&\geq26\\ 5x&\geq30 \end{aligned}

This leaves 5x on the left side of the inequality sign and 30 on the right side.

In this case you need to divide both sides by 5.

\begin{aligned} 5x&\geq30\\ x&\geq6 \end{aligned}

This leaves x on the left side of the inequality sign and 6 on the right side.

Any value greater than or equal to 6 satisfies the inequality.

Example 3: solving linear inequalities with parentheses

3(x-4)\leq12

Let’s start by expanding the parentheses.

3x-12\leq12

Then you need to add 12 to both sides.

\begin{aligned} 3x-12&\leq12\\ 3x&\leq24 \end{aligned}

This leaves 3x on the left side of the inequality sign and 24 on the right side.

In this case you need to divide both sides by 3.

\begin{aligned} 3x&\leq24\\ x&\leq8 \end{aligned}

This leaves x on the left side of the inequality sign and 8 on the right side.

Any value less than or equal to 8 satisfies the inequality.

Example 4: solving linear inequalities with unknowns on both sides

5x-6 > 2x + 15

In this case you need to subtract 2x from both sides.

\begin{aligned} 5x-6&>2x+15\\ 3x-6&>15 \end{aligned}

This leaves 3x-6 on the left side of the inequality sign and 15 on the right side.

Rearrange the inequality so that \textbf{‘x’} s are on one side of the inequality sign and numbers on the other.

In this case you need to add 6 to both sides.

\begin{aligned} 3x-6&>15\\ 3x&>21 \end{aligned}

This leaves 3x on the left side of the inequality sign and 21 on the right side.

\begin{aligned} 3x&>21\\ x&>7 \end{aligned}

This leaves x on the left side of the inequality sign and 7 on the right side.

Any value greater than 7 satisfies the inequality.

Example 5: solving linear inequalities with fractions

\cfrac{x+3}{5}<2

Rearrange the inequality to eliminate the denominator.

In this case you need to multiply both sides by 5.

\begin{aligned} \cfrac{x+3}{5}&<2\\ x+3&<10 \end{aligned}

In this case you need to subtract 3 from both sides.

\begin{aligned} \cfrac{x+3}{5}&<2\\ x+3&<10\\ x&<7 \end{aligned}

Any value less than 7 satisfies the inequality.

Example 6: solving linear inequalities with non-integer solutions

In this case you need to subtract 6 from both sides.

\begin{aligned} 6x+1&\geq4\\ 6x&\geq3 \end{aligned}

In this case you need to divide both sides by 6.

\begin{aligned} 6x+1&\geq4\\ 6x&\geq3\\ x&\geq\cfrac{3}{6} \end{aligned}

This can be simplified to \, \cfrac{1}{2} \, or the decimal equivalent.

x\geq\cfrac{1}{2}

Any value greater than or equal to \, \cfrac{1}{2} \, satisfies the inequality.

Example 7: solving linear inequalities and representing solutions on a number line

Represent the solution on a number line:

2x-7 < 5

In this case you need to add 7 to both sides.

\begin{aligned} 2x-7&<5\\ 2x&<12 \end{aligned}

In this case you need to divide both sides by 2.

\begin{aligned} 2x-7& <5\\ 2x& <12\\ x& < 6 \end{aligned}

Represent your solution on a number line.

Any value less than 6 satisfies the inequality. An open circle is required at 6 and the values lower than 6 indicated with an arrow.

Solving Inequalities example 7 image 5

Example 8: solving linear inequalities with negative x coefficients

In this case you need to subtract 1 from both sides.

\begin{aligned} 1-2x & <7 \\ -2x & <6 \end{aligned}

In this case you need to divide both sides by negative 2.

6 \div-2=-3

Change the direction of the inequality sign.

Because you divided by a negative number, you also need to change the direction of the inequality sign.

\begin{aligned} 1-2x & <7 \\ -2x & <6 \\ x &>-3 \end{aligned}

Example 9: solving linear inequalities and listing integer values that satisfy the inequality

List the integer values that satisfy:

3 < x+1\leq8

In this case you need to subtract 1 from each part.

\begin{aligned} 3&<x+1\leq8\\ 2&<x\leq7\\ \end{aligned}

List the integer values satisfied by the inequality.

2<x\leq7

2 is not included in the solution set. 7 is included in the solution set. The integers that satisfy this inequality are:

3, 4, 5, 6, 7

Example 10: solving linear inequalities and listing integer values that satisfy the inequality

7\leq4x\leq20

In this case you need to divide each part by 4.

\begin{aligned} 7\leq \, & 4x\leq20\\ \cfrac{7}{4}\leq & \; x \leq5 \end{aligned}

\cfrac{7}{4} \leq x \leq 5

\cfrac{7}{4} \, is included in the solution set but it is not an integer.

The first integer higher is 2.

5 is also included in the solution set.

The integers that satisfy this inequality are:

Example 11: solving linear inequalities and representing the solution on a number line

-3<2x+5\leq7

In this case you need to subtract 5 from each part.

\begin{aligned} -3<2x+5&\leq7\\ -8<2x&\leq2 \end{aligned}

Rearrange the inequality so that \textbf{‘x’} is isolated. In this case you need to divide each part by \bf{2} .

\begin{aligned} -3<2x+5&\leq7\\ -8<2x&\leq2\\ -4<x&\leq1 \end{aligned}

Represent the solution set on a the number line

-4<x\leq1

-4 is not included in the solution set so requires an open circle. 1 is included in the solution set so requires a closed circle.

Put a solid line between the circles to indicate all the values that satisfy the solution set.

Solving Inequalities example 11 image 5

Teaching tips for solving inequalities

  • Students should master solving simple inequalities (one-step inequalities) before moving on to two-step inequalities (or multi-step inequalities).
  • Foster student engagement by practicing solving inequalities through classroom games such as BINGO rather than daily worksheets.
  • Student practice problems should have a variety of inequalities such as inequalities with fractions, negative numbers, and parentheses. (see examples above)

Easy mistakes to make

  • Solutions as inequalities Not including the inequality symbol in the solution is a common mistake. An inequality has a range of values that satisfy it rather than a unique solution so the inequality symbol is essential. For example, when solving x + 3 < 7 giving a solution of 4 or x = 4 is incorrect, the answer must be written as an inequality x < 4 .
  • Balancing inequalities Errors can be made with solving equations and inequalities by not applying inverse operations or not balancing the inequalities. Work should be shown step-by-step with the inverse operations applied to both sides of the inequality. For example, when solving x + 3 < 7 , adding 3 to both sides rather than subtracting 3 from both sides.

Related inequalities lessons

  • Inequalities
  • Linear inequalities
  • Inequalities on a number line
  • Graphing inequalities
  • Quadratic inequalities
  • Greater than sign
  • Less than sign

Practice solving inequalities questions

3x+7 < 31

GCSE Quiz False

\begin{aligned} 3x+7&<31\\ 3x&<24\\ x&<8 \end{aligned}

\begin{aligned} 4x-3&\geq25\\ 4x&\geq28\\ x&\geq7 \end{aligned}

2(x-5)\leq8

\begin{aligned} 2(x-5)&\leq8\\ 2x-10&\leq8\\ 2x&\leq18\\ x&\leq9 \end{aligned}

6x-5 > 4x + 1

\begin{aligned} 6x-5&>4x+1\\ 2x-5&>1\\ 2x&>6\\ x&>3 \end{aligned}

\cfrac{x-4}{2}>6

\begin{aligned} \cfrac{x-4}{2}&>6\\ x-4&>12\\ x&>16 \end{aligned}

\begin{aligned} 8x+1&\geq3\\ 8x&\geq2\\ x&\geq\cfrac{2}{8}\\ x&\geq\cfrac{1}{4} \end{aligned}

7. Represent the solution on a number line.

5x-2 < 28

Solving Inequalities prac question 7 image 2

\begin{aligned} 5x-2&<28\\ 5x&<30\\ x&<6 \end{aligned}

An open circle is required and all values less than 6 indicated.

2-3x > 14

\begin{aligned} 2-3x &>14 \\ -3x &>12 \\ x &< -4 \end{aligned}

Change the direction of the inequality sign as you have divided by a negative number.

9. List the integer values that satisfy:

2<x+3\leq5

\begin{aligned} 2<x&+3\leq5\\ -1< \, &x\leq2 \end{aligned}

-1 is not included in the solution set as is greater than -1.

2 is included in the solution set as x is less than or equal to 2.

10. List the integer values that satisfy:

4\leq3x\leq21

\begin{aligned} 4\leq3&x\leq21\\ \cfrac{4}{3} \, \leq \, &x\leq7 \end{aligned}

The first integer greater than \, \cfrac{4}{3} \, is 2.

7 is included in the solution set as x is less than or equal to 7.

11. List the integer values that satisfy:

-4<3x+2\leq5

\begin{aligned} -4<3x&+2\leq5\\ -6<3&x\leq3\\ -2< \, &x\leq1 \end{aligned}

-2 is not included in the solution set as x is greater than -2.

1 is included in the solution set as x is less than or equal to 1.

Solving inequalities FAQs

Solving inequalities is where you calculate the values that an unknown variable can be in an inequality.

To solve an inequality, you need to balance the inequality on each side of the inequality sign in the same way as you would balance an equation on each side of the equal sign. Solutions can be integers, decimals, positive numbers, or negative numbers.

The next lessons are

  • Types of graphs
  • Math formulas
  • Coordinate plane

Still stuck?

At Third Space Learning, we specialize in helping teachers and school leaders to provide personalized math support for more of their students through high-quality, online one-on-one math tutoring delivered by subject experts.

Each week, our tutors support thousands of students who are at risk of not meeting their grade-level expectations, and help accelerate their progress and boost their confidence.

One on one math tuition

Find out how we can help your students achieve success with our math tutoring programs .

[FREE] Common Core Practice Tests (3rd to 8th Grade)

Prepare for math tests in your state with these 3rd Grade to 8th Grade practice assessments for Common Core and state equivalents.

Get your 6 multiple choice practice tests with detailed answers to support test prep, created by US math teachers for US math teachers!

Privacy Overview

COMMENTS

  1. Algebra - Linear Inequalities (Practice Problems)

    Give the solution in both inequality and interval notations. Here is a set of practice problems to accompany the Linear Inequalities section of the Solving Equations and Inequalities chapter of the notes for Paul Dawkins Algebra course at Lamar University.

  2. Solving Inequality Word Questions - Math is Fun

    Solving Inequality Word Questions. (You might like to read Introduction to Inequalities and Solving Inequalities first.) In Algebra we have "inequality" questions like: Sam and Alex play in the same soccer team. Last Saturday Alex scored 3 more goals than Sam, but together they scored less than 9 goals. What are the possible number of goals ...

  3. Solving Inequalities - Math is Fun

    Many simple inequalities can be solved by adding, subtracting, multiplying or dividing both sides until you are left with the variable on its own. But these things will change direction of the inequality: Multiplying or dividing both sides by a negative number; Swapping left and right hand sides

  4. How to Solve Inequalities—Step-by-Step Examples and Tutorial

    Learn how to solve inequalities and how to solve inequalities with fractions using this free step-by-step guide. You will work through several examples of how to solve an inequality requiring one or more steps. We also cover when you have to reverse an inequality sign.

  5. Solving equations & inequalities | Algebra 1 | Math | Khan ...

    Let's explore some different ways to solve equations and inequalities. We'll also see what it takes for an equation to have no solution, or infinite solutions.

  6. Solving Inequalities - Math Steps, Examples & Questions

    Free solving inequalities math topic guide, including step-by-step examples, free practice questions, teaching tips, and more!