• Bipolar Disorder
  • Therapy Center
  • When To See a Therapist
  • Types of Therapy
  • Best Online Therapy
  • Best Couples Therapy
  • Managing Stress
  • Sleep and Dreaming
  • Understanding Emotions
  • Self-Improvement
  • Healthy Relationships
  • Student Resources
  • Personality Types
  • Sweepstakes
  • Guided Meditations
  • Verywell Mind Insights
  • 2024 Verywell Mind 25
  • Mental Health in the Classroom
  • Editorial Process
  • Meet Our Review Board
  • Crisis Support

How to Write a Great Hypothesis

Hypothesis Definition, Format, Examples, and Tips

Verywell / Alex Dos Diaz

  • The Scientific Method

Hypothesis Format

Falsifiability of a hypothesis.

  • Operationalization

Hypothesis Types

Hypotheses examples.

  • Collecting Data

A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process.

Consider a study designed to examine the relationship between sleep deprivation and test performance. The hypothesis might be: "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived."

At a Glance

A hypothesis is crucial to scientific research because it offers a clear direction for what the researchers are looking to find. This allows them to design experiments to test their predictions and add to our scientific knowledge about the world. This article explores how a hypothesis is used in psychology research, how to write a good hypothesis, and the different types of hypotheses you might use.

The Hypothesis in the Scientific Method

In the scientific method , whether it involves research in psychology, biology, or some other area, a hypothesis represents what the researchers think will happen in an experiment. The scientific method involves the following steps:

  • Forming a question
  • Performing background research
  • Creating a hypothesis
  • Designing an experiment
  • Collecting data
  • Analyzing the results
  • Drawing conclusions
  • Communicating the results

The hypothesis is a prediction, but it involves more than a guess. Most of the time, the hypothesis begins with a question which is then explored through background research. At this point, researchers then begin to develop a testable hypothesis.

Unless you are creating an exploratory study, your hypothesis should always explain what you  expect  to happen.

In a study exploring the effects of a particular drug, the hypothesis might be that researchers expect the drug to have some type of effect on the symptoms of a specific illness. In psychology, the hypothesis might focus on how a certain aspect of the environment might influence a particular behavior.

Remember, a hypothesis does not have to be correct. While the hypothesis predicts what the researchers expect to see, the goal of the research is to determine whether this guess is right or wrong. When conducting an experiment, researchers might explore numerous factors to determine which ones might contribute to the ultimate outcome.

In many cases, researchers may find that the results of an experiment  do not  support the original hypothesis. When writing up these results, the researchers might suggest other options that should be explored in future studies.

In many cases, researchers might draw a hypothesis from a specific theory or build on previous research. For example, prior research has shown that stress can impact the immune system. So a researcher might hypothesize: "People with high-stress levels will be more likely to contract a common cold after being exposed to the virus than people who have low-stress levels."

In other instances, researchers might look at commonly held beliefs or folk wisdom. "Birds of a feather flock together" is one example of folk adage that a psychologist might try to investigate. The researcher might pose a specific hypothesis that "People tend to select romantic partners who are similar to them in interests and educational level."

Elements of a Good Hypothesis

So how do you write a good hypothesis? When trying to come up with a hypothesis for your research or experiments, ask yourself the following questions:

  • Is your hypothesis based on your research on a topic?
  • Can your hypothesis be tested?
  • Does your hypothesis include independent and dependent variables?

Before you come up with a specific hypothesis, spend some time doing background research. Once you have completed a literature review, start thinking about potential questions you still have. Pay attention to the discussion section in the  journal articles you read . Many authors will suggest questions that still need to be explored.

How to Formulate a Good Hypothesis

To form a hypothesis, you should take these steps:

  • Collect as many observations about a topic or problem as you can.
  • Evaluate these observations and look for possible causes of the problem.
  • Create a list of possible explanations that you might want to explore.
  • After you have developed some possible hypotheses, think of ways that you could confirm or disprove each hypothesis through experimentation. This is known as falsifiability.

In the scientific method ,  falsifiability is an important part of any valid hypothesis. In order to test a claim scientifically, it must be possible that the claim could be proven false.

Students sometimes confuse the idea of falsifiability with the idea that it means that something is false, which is not the case. What falsifiability means is that  if  something was false, then it is possible to demonstrate that it is false.

One of the hallmarks of pseudoscience is that it makes claims that cannot be refuted or proven false.

The Importance of Operational Definitions

A variable is a factor or element that can be changed and manipulated in ways that are observable and measurable. However, the researcher must also define how the variable will be manipulated and measured in the study.

Operational definitions are specific definitions for all relevant factors in a study. This process helps make vague or ambiguous concepts detailed and measurable.

For example, a researcher might operationally define the variable " test anxiety " as the results of a self-report measure of anxiety experienced during an exam. A "study habits" variable might be defined by the amount of studying that actually occurs as measured by time.

These precise descriptions are important because many things can be measured in various ways. Clearly defining these variables and how they are measured helps ensure that other researchers can replicate your results.

Replicability

One of the basic principles of any type of scientific research is that the results must be replicable.

Replication means repeating an experiment in the same way to produce the same results. By clearly detailing the specifics of how the variables were measured and manipulated, other researchers can better understand the results and repeat the study if needed.

Some variables are more difficult than others to define. For example, how would you operationally define a variable such as aggression ? For obvious ethical reasons, researchers cannot create a situation in which a person behaves aggressively toward others.

To measure this variable, the researcher must devise a measurement that assesses aggressive behavior without harming others. The researcher might utilize a simulated task to measure aggressiveness in this situation.

Hypothesis Checklist

  • Does your hypothesis focus on something that you can actually test?
  • Does your hypothesis include both an independent and dependent variable?
  • Can you manipulate the variables?
  • Can your hypothesis be tested without violating ethical standards?

The hypothesis you use will depend on what you are investigating and hoping to find. Some of the main types of hypotheses that you might use include:

  • Simple hypothesis : This type of hypothesis suggests there is a relationship between one independent variable and one dependent variable.
  • Complex hypothesis : This type suggests a relationship between three or more variables, such as two independent and dependent variables.
  • Null hypothesis : This hypothesis suggests no relationship exists between two or more variables.
  • Alternative hypothesis : This hypothesis states the opposite of the null hypothesis.
  • Statistical hypothesis : This hypothesis uses statistical analysis to evaluate a representative population sample and then generalizes the findings to the larger group.
  • Logical hypothesis : This hypothesis assumes a relationship between variables without collecting data or evidence.

A hypothesis often follows a basic format of "If {this happens} then {this will happen}." One way to structure your hypothesis is to describe what will happen to the  dependent variable  if you change the  independent variable .

The basic format might be: "If {these changes are made to a certain independent variable}, then we will observe {a change in a specific dependent variable}."

A few examples of simple hypotheses:

  • "Students who eat breakfast will perform better on a math exam than students who do not eat breakfast."
  • "Students who experience test anxiety before an English exam will get lower scores than students who do not experience test anxiety."​
  • "Motorists who talk on the phone while driving will be more likely to make errors on a driving course than those who do not talk on the phone."
  • "Children who receive a new reading intervention will have higher reading scores than students who do not receive the intervention."

Examples of a complex hypothesis include:

  • "People with high-sugar diets and sedentary activity levels are more likely to develop depression."
  • "Younger people who are regularly exposed to green, outdoor areas have better subjective well-being than older adults who have limited exposure to green spaces."

Examples of a null hypothesis include:

  • "There is no difference in anxiety levels between people who take St. John's wort supplements and those who do not."
  • "There is no difference in scores on a memory recall task between children and adults."
  • "There is no difference in aggression levels between children who play first-person shooter games and those who do not."

Examples of an alternative hypothesis:

  • "People who take St. John's wort supplements will have less anxiety than those who do not."
  • "Adults will perform better on a memory task than children."
  • "Children who play first-person shooter games will show higher levels of aggression than children who do not." 

Collecting Data on Your Hypothesis

Once a researcher has formed a testable hypothesis, the next step is to select a research design and start collecting data. The research method depends largely on exactly what they are studying. There are two basic types of research methods: descriptive research and experimental research.

Descriptive Research Methods

Descriptive research such as  case studies ,  naturalistic observations , and surveys are often used when  conducting an experiment is difficult or impossible. These methods are best used to describe different aspects of a behavior or psychological phenomenon.

Once a researcher has collected data using descriptive methods, a  correlational study  can examine how the variables are related. This research method might be used to investigate a hypothesis that is difficult to test experimentally.

Experimental Research Methods

Experimental methods  are used to demonstrate causal relationships between variables. In an experiment, the researcher systematically manipulates a variable of interest (known as the independent variable) and measures the effect on another variable (known as the dependent variable).

Unlike correlational studies, which can only be used to determine if there is a relationship between two variables, experimental methods can be used to determine the actual nature of the relationship—whether changes in one variable actually  cause  another to change.

The hypothesis is a critical part of any scientific exploration. It represents what researchers expect to find in a study or experiment. In situations where the hypothesis is unsupported by the research, the research still has value. Such research helps us better understand how different aspects of the natural world relate to one another. It also helps us develop new hypotheses that can then be tested in the future.

Thompson WH, Skau S. On the scope of scientific hypotheses .  R Soc Open Sci . 2023;10(8):230607. doi:10.1098/rsos.230607

Taran S, Adhikari NKJ, Fan E. Falsifiability in medicine: what clinicians can learn from Karl Popper [published correction appears in Intensive Care Med. 2021 Jun 17;:].  Intensive Care Med . 2021;47(9):1054-1056. doi:10.1007/s00134-021-06432-z

Eyler AA. Research Methods for Public Health . 1st ed. Springer Publishing Company; 2020. doi:10.1891/9780826182067.0004

Nosek BA, Errington TM. What is replication ?  PLoS Biol . 2020;18(3):e3000691. doi:10.1371/journal.pbio.3000691

Aggarwal R, Ranganathan P. Study designs: Part 2 - Descriptive studies .  Perspect Clin Res . 2019;10(1):34-36. doi:10.4103/picr.PICR_154_18

Nevid J. Psychology: Concepts and Applications. Wadworth, 2013.

By Kendra Cherry, MSEd Kendra Cherry, MS, is a psychosocial rehabilitation specialist, psychology educator, and author of the "Everything Psychology Book."

  • Privacy Policy

Research Method

Home » What is a Hypothesis – Types, Examples and Writing Guide

What is a Hypothesis – Types, Examples and Writing Guide

Table of Contents

What is a Hypothesis

Definition:

Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation.

Hypothesis is often used in scientific research to guide the design of experiments and the collection and analysis of data. It is an essential element of the scientific method, as it allows researchers to make predictions about the outcome of their experiments and to test those predictions to determine their accuracy.

Types of Hypothesis

Types of Hypothesis are as follows:

Research Hypothesis

A research hypothesis is a statement that predicts a relationship between variables. It is usually formulated as a specific statement that can be tested through research, and it is often used in scientific research to guide the design of experiments.

Null Hypothesis

The null hypothesis is a statement that assumes there is no significant difference or relationship between variables. It is often used as a starting point for testing the research hypothesis, and if the results of the study reject the null hypothesis, it suggests that there is a significant difference or relationship between variables.

Alternative Hypothesis

An alternative hypothesis is a statement that assumes there is a significant difference or relationship between variables. It is often used as an alternative to the null hypothesis and is tested against the null hypothesis to determine which statement is more accurate.

Directional Hypothesis

A directional hypothesis is a statement that predicts the direction of the relationship between variables. For example, a researcher might predict that increasing the amount of exercise will result in a decrease in body weight.

Non-directional Hypothesis

A non-directional hypothesis is a statement that predicts the relationship between variables but does not specify the direction. For example, a researcher might predict that there is a relationship between the amount of exercise and body weight, but they do not specify whether increasing or decreasing exercise will affect body weight.

Statistical Hypothesis

A statistical hypothesis is a statement that assumes a particular statistical model or distribution for the data. It is often used in statistical analysis to test the significance of a particular result.

Composite Hypothesis

A composite hypothesis is a statement that assumes more than one condition or outcome. It can be divided into several sub-hypotheses, each of which represents a different possible outcome.

Empirical Hypothesis

An empirical hypothesis is a statement that is based on observed phenomena or data. It is often used in scientific research to develop theories or models that explain the observed phenomena.

Simple Hypothesis

A simple hypothesis is a statement that assumes only one outcome or condition. It is often used in scientific research to test a single variable or factor.

Complex Hypothesis

A complex hypothesis is a statement that assumes multiple outcomes or conditions. It is often used in scientific research to test the effects of multiple variables or factors on a particular outcome.

Applications of Hypothesis

Hypotheses are used in various fields to guide research and make predictions about the outcomes of experiments or observations. Here are some examples of how hypotheses are applied in different fields:

  • Science : In scientific research, hypotheses are used to test the validity of theories and models that explain natural phenomena. For example, a hypothesis might be formulated to test the effects of a particular variable on a natural system, such as the effects of climate change on an ecosystem.
  • Medicine : In medical research, hypotheses are used to test the effectiveness of treatments and therapies for specific conditions. For example, a hypothesis might be formulated to test the effects of a new drug on a particular disease.
  • Psychology : In psychology, hypotheses are used to test theories and models of human behavior and cognition. For example, a hypothesis might be formulated to test the effects of a particular stimulus on the brain or behavior.
  • Sociology : In sociology, hypotheses are used to test theories and models of social phenomena, such as the effects of social structures or institutions on human behavior. For example, a hypothesis might be formulated to test the effects of income inequality on crime rates.
  • Business : In business research, hypotheses are used to test the validity of theories and models that explain business phenomena, such as consumer behavior or market trends. For example, a hypothesis might be formulated to test the effects of a new marketing campaign on consumer buying behavior.
  • Engineering : In engineering, hypotheses are used to test the effectiveness of new technologies or designs. For example, a hypothesis might be formulated to test the efficiency of a new solar panel design.

How to write a Hypothesis

Here are the steps to follow when writing a hypothesis:

Identify the Research Question

The first step is to identify the research question that you want to answer through your study. This question should be clear, specific, and focused. It should be something that can be investigated empirically and that has some relevance or significance in the field.

Conduct a Literature Review

Before writing your hypothesis, it’s essential to conduct a thorough literature review to understand what is already known about the topic. This will help you to identify the research gap and formulate a hypothesis that builds on existing knowledge.

Determine the Variables

The next step is to identify the variables involved in the research question. A variable is any characteristic or factor that can vary or change. There are two types of variables: independent and dependent. The independent variable is the one that is manipulated or changed by the researcher, while the dependent variable is the one that is measured or observed as a result of the independent variable.

Formulate the Hypothesis

Based on the research question and the variables involved, you can now formulate your hypothesis. A hypothesis should be a clear and concise statement that predicts the relationship between the variables. It should be testable through empirical research and based on existing theory or evidence.

Write the Null Hypothesis

The null hypothesis is the opposite of the alternative hypothesis, which is the hypothesis that you are testing. The null hypothesis states that there is no significant difference or relationship between the variables. It is important to write the null hypothesis because it allows you to compare your results with what would be expected by chance.

Refine the Hypothesis

After formulating the hypothesis, it’s important to refine it and make it more precise. This may involve clarifying the variables, specifying the direction of the relationship, or making the hypothesis more testable.

Examples of Hypothesis

Here are a few examples of hypotheses in different fields:

  • Psychology : “Increased exposure to violent video games leads to increased aggressive behavior in adolescents.”
  • Biology : “Higher levels of carbon dioxide in the atmosphere will lead to increased plant growth.”
  • Sociology : “Individuals who grow up in households with higher socioeconomic status will have higher levels of education and income as adults.”
  • Education : “Implementing a new teaching method will result in higher student achievement scores.”
  • Marketing : “Customers who receive a personalized email will be more likely to make a purchase than those who receive a generic email.”
  • Physics : “An increase in temperature will cause an increase in the volume of a gas, assuming all other variables remain constant.”
  • Medicine : “Consuming a diet high in saturated fats will increase the risk of developing heart disease.”

Purpose of Hypothesis

The purpose of a hypothesis is to provide a testable explanation for an observed phenomenon or a prediction of a future outcome based on existing knowledge or theories. A hypothesis is an essential part of the scientific method and helps to guide the research process by providing a clear focus for investigation. It enables scientists to design experiments or studies to gather evidence and data that can support or refute the proposed explanation or prediction.

The formulation of a hypothesis is based on existing knowledge, observations, and theories, and it should be specific, testable, and falsifiable. A specific hypothesis helps to define the research question, which is important in the research process as it guides the selection of an appropriate research design and methodology. Testability of the hypothesis means that it can be proven or disproven through empirical data collection and analysis. Falsifiability means that the hypothesis should be formulated in such a way that it can be proven wrong if it is incorrect.

In addition to guiding the research process, the testing of hypotheses can lead to new discoveries and advancements in scientific knowledge. When a hypothesis is supported by the data, it can be used to develop new theories or models to explain the observed phenomenon. When a hypothesis is not supported by the data, it can help to refine existing theories or prompt the development of new hypotheses to explain the phenomenon.

When to use Hypothesis

Here are some common situations in which hypotheses are used:

  • In scientific research , hypotheses are used to guide the design of experiments and to help researchers make predictions about the outcomes of those experiments.
  • In social science research , hypotheses are used to test theories about human behavior, social relationships, and other phenomena.
  • I n business , hypotheses can be used to guide decisions about marketing, product development, and other areas. For example, a hypothesis might be that a new product will sell well in a particular market, and this hypothesis can be tested through market research.

Characteristics of Hypothesis

Here are some common characteristics of a hypothesis:

  • Testable : A hypothesis must be able to be tested through observation or experimentation. This means that it must be possible to collect data that will either support or refute the hypothesis.
  • Falsifiable : A hypothesis must be able to be proven false if it is not supported by the data. If a hypothesis cannot be falsified, then it is not a scientific hypothesis.
  • Clear and concise : A hypothesis should be stated in a clear and concise manner so that it can be easily understood and tested.
  • Based on existing knowledge : A hypothesis should be based on existing knowledge and research in the field. It should not be based on personal beliefs or opinions.
  • Specific : A hypothesis should be specific in terms of the variables being tested and the predicted outcome. This will help to ensure that the research is focused and well-designed.
  • Tentative: A hypothesis is a tentative statement or assumption that requires further testing and evidence to be confirmed or refuted. It is not a final conclusion or assertion.
  • Relevant : A hypothesis should be relevant to the research question or problem being studied. It should address a gap in knowledge or provide a new perspective on the issue.

Advantages of Hypothesis

Hypotheses have several advantages in scientific research and experimentation:

  • Guides research: A hypothesis provides a clear and specific direction for research. It helps to focus the research question, select appropriate methods and variables, and interpret the results.
  • Predictive powe r: A hypothesis makes predictions about the outcome of research, which can be tested through experimentation. This allows researchers to evaluate the validity of the hypothesis and make new discoveries.
  • Facilitates communication: A hypothesis provides a common language and framework for scientists to communicate with one another about their research. This helps to facilitate the exchange of ideas and promotes collaboration.
  • Efficient use of resources: A hypothesis helps researchers to use their time, resources, and funding efficiently by directing them towards specific research questions and methods that are most likely to yield results.
  • Provides a basis for further research: A hypothesis that is supported by data provides a basis for further research and exploration. It can lead to new hypotheses, theories, and discoveries.
  • Increases objectivity: A hypothesis can help to increase objectivity in research by providing a clear and specific framework for testing and interpreting results. This can reduce bias and increase the reliability of research findings.

Limitations of Hypothesis

Some Limitations of the Hypothesis are as follows:

  • Limited to observable phenomena: Hypotheses are limited to observable phenomena and cannot account for unobservable or intangible factors. This means that some research questions may not be amenable to hypothesis testing.
  • May be inaccurate or incomplete: Hypotheses are based on existing knowledge and research, which may be incomplete or inaccurate. This can lead to flawed hypotheses and erroneous conclusions.
  • May be biased: Hypotheses may be biased by the researcher’s own beliefs, values, or assumptions. This can lead to selective interpretation of data and a lack of objectivity in research.
  • Cannot prove causation: A hypothesis can only show a correlation between variables, but it cannot prove causation. This requires further experimentation and analysis.
  • Limited to specific contexts: Hypotheses are limited to specific contexts and may not be generalizable to other situations or populations. This means that results may not be applicable in other contexts or may require further testing.
  • May be affected by chance : Hypotheses may be affected by chance or random variation, which can obscure or distort the true relationship between variables.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Survey Instruments

Survey Instruments – List and Their Uses

Data Verification

Data Verification – Process, Types and Examples

Research Results

Research Results Section – Writing Guide and...

Purpose of Research

Purpose of Research – Objectives and Applications

Background of The Study

Background of The Study – Examples and Writing...

Research Topic

Research Topics – Ideas and Examples

helpful professor logo

13 Different Types of Hypothesis

13 Different Types of Hypothesis

Chris Drew (PhD)

Dr. Chris Drew is the founder of the Helpful Professor. He holds a PhD in education and has published over 20 articles in scholarly journals. He is the former editor of the Journal of Learning Development in Higher Education. [Image Descriptor: Photo of Chris]

Learn about our Editorial Process

hypothesis definition and example, explained below

There are 13 different types of hypothesis. These include simple, complex, null, alternative, composite, directional, non-directional, logical, empirical, statistical, associative, exact, and inexact.

A hypothesis can be categorized into one or more of these types. However, some are mutually exclusive and opposites. Simple and complex hypotheses are mutually exclusive, as are direction and non-direction, and null and alternative hypotheses.

Below I explain each hypothesis in simple terms for absolute beginners. These definitions may be too simple for some, but they’re designed to be clear introductions to the terms to help people wrap their heads around the concepts early on in their education about research methods .

Types of Hypothesis

Before you Proceed: Dependent vs Independent Variables

A research study and its hypotheses generally examine the relationships between independent and dependent variables – so you need to know these two concepts:

  • The independent variable is the variable that is causing a change.
  • The dependent variable is the variable the is affected by the change. This is the variable being tested.

Read my full article on dependent vs independent variables for more examples.

Example: Eating carrots (independent variable) improves eyesight (dependent variable).

1. Simple Hypothesis

A simple hypothesis is a hypothesis that predicts a correlation between two test variables: an independent and a dependent variable.

This is the easiest and most straightforward type of hypothesis. You simply need to state an expected correlation between the dependant variable and the independent variable.

You do not need to predict causation (see: directional hypothesis). All you would need to do is prove that the two variables are linked.

Simple Hypothesis Examples

QuestionSimple Hypothesis
Do people over 50 like Coca-Cola more than people under 50?On average, people over 50 like Coca-Cola more than people under 50.
According to national registries of car accident data, are Canadians better drivers than Americans?Canadians are better drivers than Americans.
Are carpenters more liberal than plumbers?Carpenters are more liberal than plumbers.
Do guitarists live longer than pianists?Guitarists do live longer than pianists.
Do dogs eat more in summer than winter?Dogs do eat more in summer than winter.

2. Complex Hypothesis

A complex hypothesis is a hypothesis that contains multiple variables, making the hypothesis more specific but also harder to prove.

You can have multiple independent and dependant variables in this hypothesis.

Complex Hypothesis Example

QuestionComplex Hypothesis
Do (1) age and (2) weight affect chances of getting (3) diabetes and (4) heart disease?(1) Age and (2) weight increase your chances of getting (3) diabetes and (4) heart disease.

In the above example, we have multiple independent and dependent variables:

  • Independent variables: Age and weight.
  • Dependent variables: diabetes and heart disease.

Because there are multiple variables, this study is a lot more complex than a simple hypothesis. It quickly gets much more difficult to prove these hypotheses. This is why undergraduate and first-time researchers are usually encouraged to use simple hypotheses.

3. Null Hypothesis

A null hypothesis will predict that there will be no significant relationship between the two test variables.

For example, you can say that “The study will show that there is no correlation between marriage and happiness.”

A good way to think about a null hypothesis is to think of it in the same way as “innocent until proven guilty”[1]. Unless you can come up with evidence otherwise, your null hypothesis will stand.

A null hypothesis may also highlight that a correlation will be inconclusive . This means that you can predict that the study will not be able to confirm your results one way or the other. For example, you can say “It is predicted that the study will be unable to confirm a correlation between the two variables due to foreseeable interference by a third variable .”

Beware that an inconclusive null hypothesis may be questioned by your teacher. Why would you conduct a test that you predict will not provide a clear result? Perhaps you should take a closer look at your methodology and re-examine it. Nevertheless, inconclusive null hypotheses can sometimes have merit.

Null Hypothesis Examples

QuestionNull Hypothesis (H )
Do people over 50 like Coca-Cola more than people under 50?Age has no effect on preference for Coca-Cola.
Are Canadians better drivers than Americans?Nationality has no effect on driving ability.
Are carpenters more liberal than plumbers?There is no statistically significant difference in political views between carpenters and plumbers.
Do guitarists live longer than pianists?There is no statistically significant difference in life expectancy between guitarists and pianists.
Do dogs eat more in summer than winter?Time of year has no effect on dogs’ appetites.

4. Alternative Hypothesis

An alternative hypothesis is a hypothesis that is anything other than the null hypothesis. It will disprove the null hypothesis.

We use the symbol H A or H 1 to denote an alternative hypothesis.

The null and alternative hypotheses are usually used together. We will say the null hypothesis is the case where a relationship between two variables is non-existent. The alternative hypothesis is the case where there is a relationship between those two variables.

The following statement is always true: H 0 ≠ H A .

Let’s take the example of the hypothesis: “Does eating oatmeal before an exam impact test scores?”

We can have two hypotheses here:

  • Null hypothesis (H 0 ): “Eating oatmeal before an exam does not impact test scores.”
  • Alternative hypothesis (H A ): “Eating oatmeal before an exam does impact test scores.”

For the alternative hypothesis to be true, all we have to do is disprove the null hypothesis for the alternative hypothesis to be true. We do not need an exact prediction of how much oatmeal will impact the test scores or even if the impact is positive or negative. So long as the null hypothesis is proven to be false, then the alternative hypothesis is proven to be true.

5. Composite Hypothesis

A composite hypothesis is a hypothesis that does not predict the exact parameters, distribution, or range of the dependent variable.

Often, we would predict an exact outcome. For example: “23 year old men are on average 189cm tall.” Here, we are giving an exact parameter. So, the hypothesis is not composite.

But, often, we cannot exactly hypothesize something. We assume that something will happen, but we’re not exactly sure what. In these cases, we might say: “23 year old men are not on average 189cm tall.”

We haven’t set a distribution range or exact parameters of the average height of 23 year old men. So, we’ve introduced a composite hypothesis as opposed to an exact hypothesis.

Generally, an alternative hypothesis (discussed above) is composite because it is defined as anything except the null hypothesis. This ‘anything except’ does not define parameters or distribution, and therefore it’s an example of a composite hypothesis.

6. Directional Hypothesis

A directional hypothesis makes a prediction about the positivity or negativity of the effect of an intervention prior to the test being conducted.

Instead of being agnostic about whether the effect will be positive or negative, it nominates the effect’s directionality.

We often call this a one-tailed hypothesis (in contrast to a two-tailed or non-directional hypothesis) because, looking at a distribution graph, we’re hypothesizing that the results will lean toward one particular tail on the graph – either the positive or negative.

Directional Hypothesis Examples

QuestionDirectional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to an in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

7. Non-Directional Hypothesis

A non-directional hypothesis does not specify the predicted direction (e.g. positivity or negativity) of the effect of the independent variable on the dependent variable.

These hypotheses predict an effect, but stop short of saying what that effect will be.

A non-directional hypothesis is similar to composite and alternative hypotheses. All three types of hypothesis tend to make predictions without defining a direction. In a composite hypothesis, a specific prediction is not made (although a general direction may be indicated, so the overlap is not complete). For an alternative hypothesis, you often predict that the even will be anything but the null hypothesis, which means it could be more or less than H 0 (or in other words, non-directional).

Let’s turn the above directional hypotheses into non-directional hypotheses.

Non-Directional Hypothesis Examples

QuestionNon-Directional Hypothesis
Does adding a 10c charge to plastic bags at grocery stores lead to changes in uptake of reusable bags?Adding a 10c charge to plastic bags in grocery stores will lead to a in uptake of reusable bags.
Does a Universal Basic Income influence retail worker wages?Universal Basic Income retail worker wages.
Does rainy weather impact the amount of moderate to high intensity exercise people do per week in the city of Vancouver?Rainy weather the amount of moderate to high intensity exercise people do per week in the city of Vancouver.
Does introducing fluoride to the water system in the city of Austin impact number of dental visits per capita per year?Introducing fluoride to the water system in the city of Austin the number of dental visits per capita per year?
Does giving children chocolate rewards during study time for positive answers impact standardized test scores?Giving children chocolate rewards during study time for positive answers standardized test scores.

8. Logical Hypothesis

A logical hypothesis is a hypothesis that cannot be tested, but has some logical basis underpinning our assumptions.

These are most commonly used in philosophy because philosophical questions are often untestable and therefore we must rely on our logic to formulate logical theories.

Usually, we would want to turn a logical hypothesis into an empirical one through testing if we got the chance. Unfortunately, we don’t always have this opportunity because the test is too complex, expensive, or simply unrealistic.

Here are some examples:

  • Before the 1980s, it was hypothesized that the Titanic came to its resting place at 41° N and 49° W, based on the time the ship sank and the ship’s presumed path across the Atlantic Ocean. However, due to the depth of the ocean, it was impossible to test. Thus, the hypothesis was simply a logical hypothesis.
  • Dinosaurs closely related to Aligators probably had green scales because Aligators have green scales. However, as they are all extinct, we can only rely on logic and not empirical data.

9. Empirical Hypothesis

An empirical hypothesis is the opposite of a logical hypothesis. It is a hypothesis that is currently being tested using scientific analysis. We can also call this a ‘working hypothesis’.

We can to separate research into two types: theoretical and empirical. Theoretical research relies on logic and thought experiments. Empirical research relies on tests that can be verified by observation and measurement.

So, an empirical hypothesis is a hypothesis that can and will be tested.

  • Raising the wage of restaurant servers increases staff retention.
  • Adding 1 lb of corn per day to cows’ diets decreases their lifespan.
  • Mushrooms grow faster at 22 degrees Celsius than 27 degrees Celsius.

Each of the above hypotheses can be tested, making them empirical rather than just logical (aka theoretical).

10. Statistical Hypothesis

A statistical hypothesis utilizes representative statistical models to draw conclusions about broader populations.

It requires the use of datasets or carefully selected representative samples so that statistical inference can be drawn across a larger dataset.

This type of research is necessary when it is impossible to assess every single possible case. Imagine, for example, if you wanted to determine if men are taller than women. You would be unable to measure the height of every man and woman on the planet. But, by conducting sufficient random samples, you would be able to predict with high probability that the results of your study would remain stable across the whole population.

You would be right in guessing that almost all quantitative research studies conducted in academic settings today involve statistical hypotheses.

Statistical Hypothesis Examples

  • Human Sex Ratio. The most famous statistical hypothesis example is that of John Arbuthnot’s sex at birth case study in 1710. Arbuthnot used birth data to determine with high statistical probability that there are more male births than female births. He called this divine providence, and to this day, his findings remain true: more men are born than women.
  • Lady Testing Tea. A 1935 study by Ronald Fisher involved testing a woman who believed she could tell whether milk was added before or after water to a cup of tea. Fisher gave her 4 cups in which one randomly had milk placed before the tea. He repeated the test 8 times. The lady was correct each time. Fisher found that she had a 1 in 70 chance of getting all 8 test correct, which is a statistically significant result.

11. Associative Hypothesis

An associative hypothesis predicts that two variables are linked but does not explore whether one variable directly impacts upon the other variable.

We commonly refer to this as “ correlation does not mean causation ”. Just because there are a lot of sick people in a hospital, it doesn’t mean that the hospital made the people sick. There is something going on there that’s causing the issue (sick people are flocking to the hospital).

So, in an associative hypothesis, you note correlation between an independent and dependent variable but do not make a prediction about how the two interact. You stop short of saying one thing causes another thing.

Associative Hypothesis Examples

  • Sick people in hospital. You could conduct a study hypothesizing that hospitals have more sick people in them than other institutions in society. However, you don’t hypothesize that the hospitals caused the sickness.
  • Lice make you healthy. In the Middle Ages, it was observed that sick people didn’t tend to have lice in their hair. The inaccurate conclusion was that lice was not only a sign of health, but that they made people healthy. In reality, there was an association here, but not causation. The fact was that lice were sensitive to body temperature and fled bodies that had fevers.

12. Causal Hypothesis

A causal hypothesis predicts that two variables are not only associated, but that changes in one variable will cause changes in another.

A causal hypothesis is harder to prove than an associative hypothesis because the cause needs to be definitively proven. This will often require repeating tests in controlled environments with the researchers making manipulations to the independent variable, or the use of control groups and placebo effects .

If we were to take the above example of lice in the hair of sick people, researchers would have to put lice in sick people’s hair and see if it made those people healthier. Researchers would likely observe that the lice would flee the hair, but the sickness would remain, leading to a finding of association but not causation.

Causal Hypothesis Examples

QuestionCausation HypothesisCorrelation Hypothesis
Does marriage cause baldness among men?Marriage causes stress which leads to hair loss.Marriage occurs at an age when men naturally start balding.
What is the relationship between recreational drugs and psychosis?Recreational drugs cause psychosis.People with psychosis take drugs to self-medicate.
Do ice cream sales lead to increase drownings?Ice cream sales cause increased drownings.Ice cream sales peak during summer, when more people are swimming and therefore more drownings are occurring.

13. Exact vs. Inexact Hypothesis

For brevity’s sake, I have paired these two hypotheses into the one point. The reality is that we’ve already seen both of these types of hypotheses at play already.

An exact hypothesis (also known as a point hypothesis) specifies a specific prediction whereas an inexact hypothesis assumes a range of possible values without giving an exact outcome. As Helwig [2] argues:

“An “exact” hypothesis specifies the exact value(s) of the parameter(s) of interest, whereas an “inexact” hypothesis specifies a range of possible values for the parameter(s) of interest.”

Generally, a null hypothesis is an exact hypothesis whereas alternative, composite, directional, and non-directional hypotheses are all inexact.

See Next: 15 Hypothesis Examples

This is introductory information that is basic and indeed quite simplified for absolute beginners. It’s worth doing further independent research to get deeper knowledge of research methods and how to conduct an effective research study. And if you’re in education studies, don’t miss out on my list of the best education studies dissertation ideas .

[1] https://jnnp.bmj.com/content/91/6/571.abstract

[2] http://users.stat.umn.edu/~helwig/notes/SignificanceTesting.pdf

Chris

  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 10 Reasons you’re Perpetually Single
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 20 Montessori Toddler Bedrooms (Design Inspiration)
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 21 Montessori Homeschool Setups
  • Chris Drew (PhD) https://helpfulprofessor.com/author/chris-drew-phd-2/ 101 Hidden Talents Examples

2 thoughts on “13 Different Types of Hypothesis”

' src=

Wow! This introductionary materials are very helpful. I teach the begginers in research for the first time in my career. The given tips and materials are very helpful. Chris, thank you so much! Excellent materials!

' src=

You’re more than welcome! If you want a pdf version of this article to provide for your students to use as a weekly reading on in-class discussion prompt for seminars, just drop me an email in the Contact form and I’ll get one sent out to you.

When I’ve taught this seminar, I’ve put my students into groups, cut these definitions into strips, and handed them out to the groups. Then I get them to try to come up with hypotheses that fit into each ‘type’. You can either just rotate hypothesis types so they get a chance at creating a hypothesis of each type, or get them to “teach” their hypothesis type and examples to the class at the end of the seminar.

Cheers, Chris

Leave a Comment Cancel Reply

Your email address will not be published. Required fields are marked *

what is hypothesis and example

  • Researching
  • 7. Hypothesis

How to write a hypothesis

Medieval warrior with sword on shoulder

Once you have created your three topic sentences , you are ready to create your hypothesis.

What is a 'hypothesis'?

A hypothesis is a single sentence answer to the Key Inquiry Question  that clearly states what your entire essay is going to argue.

It contains both the argument and the main reasons in support of your argument. Each hypothesis should clearly state the ‘answer’ to the question, followed by a ‘why’.

For Example:  

The Indigenous people of Australia were treated as second-class citizens until the 1960’s (answer) by the denial of basic political rights by State and Federal governments (why) .

How do you create a hypothesis?

Back in Step 3 of the research process, you split your Key Inquiry Question into three sub-questions .

Then at Step 6 you used the quotes from your Source Research to create answers to each of the sub-questions. These answers became your three Topic Sentences .

To create your hypothesis, you need to combine the three Topic Sentences into a single sentence answer.

By combining your three answers to the sub-questions , you are ultimately providing a complete answer to the original Key Inquiry Question .

For example:

what is hypothesis and example

What's next?

what is hypothesis and example

Need a digital Research Journal?

what is hypothesis and example

Additional resources

What do you need help with, download ready-to-use digital learning resources.

what is hypothesis and example

Copyright © History Skills 2014-2024.

Contact  via email

help for assessment

  • Customer Reviews
  • Extended Essays
  • IB Internal Assessment
  • Theory of Knowledge
  • Literature Review
  • Dissertations
  • Essay Writing
  • Research Writing
  • Assignment Help
  • Capstone Projects
  • College Application
  • Online Class

Research Questions vs Hypothesis: What’s The Difference?

Author Image

by  Antony W

August 1, 2024

research questions vs hypothesis

You’ll need to come up with a research question or a hypothesis to guide your next research project. But what is a hypothesis in the first place? What is the perfect definition for a research question? And, what’s the difference between the two?

In this guide to research questions vs hypothesis, we’ll look at the definition of each component and the difference between the two.

We’ll also look at when a research question and a hypothesis may be useful and provide you with some tips that you can use to come up with hypothesis and research questions that will suit your research topic . 

Let’s get to it.

What’s a Research Question?

We define a research question as the exact question you want to answer on a given topic or research project. Good research questions should be clear and easy to understand, allow for the collection of necessary data, and be specific and relevant to your field of study.

Research questions are part of heuristic research methods, where researchers use personal experiences and observations to understand a research subject. By using such approaches to explore the question, you should be able to provide an analytical justification of why and how you should respond to the question. 

While it’s common for researchers to focus on one question at a time, more complex topics may require two or more questions to cover in-depth.

When is a Research Question Useful? 

A research question may be useful when and if: 

  • There isn’t enough previous research on the topic
  • You want to report a wider range out of outcome when doing your research project
  • You want to conduct a more open ended inquiries 

Perhaps the biggest drawback with research questions is that they tend to researchers in a position to “fish expectations” or excessively manipulate their findings.

Again, research questions sometimes tend to be less specific, and the reason is that there often no sufficient previous research on the questions.

What’s a Hypothesis? 

A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement.

Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption.

Researchers use the null approach for statements they can disapprove. They take a hypothesis and add a “not” to it to make it a working null hypothesis.

A null hypothesis is quite common in scientific methods. In this case, you have to formulate a hypothesis, and then conduct an investigation to disapprove the statement.

If you can disapprove the statement, you develop another hypothesis and then repeat the process until you can’t disapprove the statement.

In other words, if a hypothesis is true, then it must have been repeatedly tested and verified.

The consensus among researchers is that, like research questions, a hypothesis should not only be clear and easy to understand but also have a definite focus, answerable, and relevant to your field of study. 

When is a Hypothesis Useful?

A hypothesis may be useful when or if:

  • There’s enough previous research on the topic
  • You want to test a specific model or a particular theory
  • You anticipate a likely outcome in advance 

The drawback to hypothesis as a scientific method is that it can hinder flexibility, or possibly blind a researcher not to see unanticipated results.

Research Question vs Hypothesis: Which One Should Come First 

Researchers use scientific methods to hone on different theories. So if the purpose of the research project were to analyze a concept, a scientific method would be necessary.

Such a case requires coming up with a research question first, followed by a scientific method.

Since a hypothesis is part of a research method, it will come after the research question.

Research Question vs Hypothesis: What’s the Difference? 

The following are the differences between a research question and a hypothesis.

We look at the differences in purpose and structure, writing, as well as conclusion. 

Research Questions vs Hypothesis: Some Useful Advice 

As much as there are differences between hypothesis and research questions, you have to state either one in the introduction and then repeat the same in the conclusion of your research paper.

Whichever element you opt to use, you should clearly demonstrate that you understand your topic, have achieved the goal of your research project, and not swayed a bit in your research process.

If it helps, start and conclude every chapter of your research project by providing additional information on how you’ve or will address the hypothesis or research question.

You should also include the aims and objectives of coming up with the research question or formulating the hypothesis. Doing so will go a long way to demonstrate that you have a strong focus on the research issue at hand. 

Research Questions vs Hypothesis: Conclusion 

If you need help with coming up with research questions, formulating a hypothesis, and completing your research paper writing , feel free to talk to us. 

About the author 

Antony W is a professional writer and coach at Help for Assessment. He spends countless hours every day researching and writing great content filled with expert advice on how to write engaging essays, research papers, and assignments.

The Three Most Common Types of Hypotheses

In this post, I discuss three of the most common hypotheses in psychology research, and what statistics are often used to test them.

  • Post author By sean
  • Post date September 28, 2013
  • 37 Comments on The Three Most Common Types of Hypotheses

what is hypothesis and example

Simple main effects (i.e., X leads to Y) are usually not going to get you published. Main effects can be exciting in the early stages of research to show the existence of a new effect, but as a field matures the types of questions that scientists are trying to answer tend to become more nuanced and specific.  In this post, I’ll briefly describe the three most common kinds of hypotheses that expand upon simple main effects – at least, the most common ones I’ve seen in my research career in psychology – as well as providing some resources to help you learn about how to test these hypotheses using statistics.

Incremental Validity

“Can X predict Y over and above other important predictors?”

Inc_Validity

This is probably the simplest of the three hypotheses I propose. Basically, you attempt to rule out potential confounding variables by controlling for them in your analysis.  We do this because (in many cases) our predictor variables are correlated with each other. This is undesirable from a statistical perspective, but is common with real data. The idea is that we want to see if X can predict unique variance in Y over and above the other variables you include.

In terms of analysis, you are probably going to use some variation of multiple regression or partial correlations.  For example, in my own work I’ve shown in the past that friendship intimacy as coded from autobiographical narratives can predict concern for the next generation over and above numerous other variables, such as optimism, depression, and relationship status ( Mackinnon et al., 2011 ).

“Under what conditions does X lead to Y?”

Of the three techniques I describe, moderation is probably the most tricky to understand.  Essentially, it proposes that the size of a relationship between two variables changes depending upon the value of a third variable, known as a “moderator.”  For example, in the diagram below you might find a simple main effect that is moderated by sex. That is, the relationship is stronger for women than for men:

moderation

With moderation, it is important to note that the moderating variable can be a category (e.g., sex) or it can be a continuous variable (e.g., scores on a personality questionnaire).  When a moderator is continuous, usually you’re making statements like: “As the value of the moderator increases, the relationship between X and Y also increases.”

“Does X predict M, which in turn predicts Y?”

We might know that X leads to Y, but a mediation hypothesis proposes a mediating, or intervening variable. That is, X leads to M, which in turn leads to Y.  In the diagram below I use a different way of visually representing things consistent with how people typically report things when using path analysis.

Mediation

I use mediation a lot in my own research. For example, I’ve published data suggesting the relationship between perfectionism and depression is mediated by relationship conflict ( Mackinnon et al., 2012 ). That is, perfectionism leads to increased conflict, which in turn leads to heightened depression. Another way of saying this is that perfectionism has an indirect effect on depression through conflict.

Helpful links to get you started testing these hypotheses

Depending on the nature of your data, there are multiple ways to address each of these hypotheses using statistics. They can also be combined together (e.g., mediated moderation). Nonetheless, a core understanding of these three hypotheses and how to analyze them using statistics is essential for any researcher in the social or health sciences.  Below are a few links that might help you get started:

Are you a little rusty with multiple regression? The basics of this technique are required for most common tests of these hypotheses. You might check out this guide as a helpful resource:

https://statistics.laerd.com/spss-tutorials/multiple-regression-using-spss-statistics.php

David Kenny’s Mediation Website provides an excellent overview of mediation and moderation for the beginner.

http://davidakenny.net/cm/mediate.htm

http://davidakenny.net/cm/moderation.htm

Preacher and Haye’s INDIRECT Macro is a great, easy way to implement mediation in SPSS software, and their MODPROBE macro is a useful tool for testing moderation.

http://afhayes.com/spss-sas-and-mplus-macros-and-code.html

If you want to graph the results of your moderation analyses, the excel calculators provided on Jeremy Dawson’s webpage are fantastic, easy-to-use tools:

http://www.jeremydawson.co.uk/slopes.htm

  • Tags mediation , moderation , regression , tutorial

37 replies on “The Three Most Common Types of Hypotheses”

I want to see clearly the three types of hypothesis

Thanks for your information. I really like this

Thank you so much, writing up my masters project now and wasn’t sure whether one of my variables was mediating or moderating….Much clearer now.

Thank you for simplified presentation. It is clearer to me now than ever before.

Thank you. Concise and clear

hello there

I would like to ask about mediation relationship: If I have three variables( X-M-Y)how many hypotheses should I write down? Should I have 2 or 3? In other words, should I have hypotheses for the mediating relationship? What about questions and objectives? Should be 3? Thank you.

Hi Osama. It’s really a stylistic thing. You could write it out as 3 separate hypotheses (X -> Y; X -> M; M -> Y) or you could just write out one mediation hypotheses “X will have an indirect effect on Y through M.” Usually, I’d write just the 1 because it conserves space, but either would be appropriate.

Hi Sean, according to the three steps model (Dudley, Benuzillo and Carrico, 2004; Pardo and Román, 2013)., we can test hypothesis of mediator variable in three steps: (X -> Y; X -> M; X and M -> Y). Then, we must use the Sobel test to make sure that the effect is significant after using the mediator variable.

Yes, but this is older advice. Best practice now is to calculate an indirect effect and use bootstrapping, rather than the causal steps approach and the more out-dated Sobel test. I’d recommend reading Hayes (2018) book for more info:

Hayes, A. F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed). Guilford Publications.

Hi! It’s been really helpful but I still don’t know how to formulate the hypothesis with my mediating variable.

I have one dependent variable DV which is formed by DV1 and DV2, then I have MV (mediating variable), and then 2 independent variables IV1, and IV2.

How many hypothesis should I write? I hope you can help me 🙂

Thank you so much!!

If I’m understanding you correctly, I guess 2 mediation hypotheses:

IV1 –> Med –> DV1&2 IV2 –> Med –> DV1&2

Thank you so much for your quick answer! ^^

Could you help me formulate my research question? English is not my mother language and I have trouble choosing the right words. My x = psychopathy y = aggression m = deficis in emotion recognition

thank you in advance

I have mediator and moderator how should I make my hypothesis

Can you have a negative partial effect? IV – M – DV. That is my M will have negative effect on the DV – e.g Social media usage (M) will partial negative mediate the relationship between father status (IV) and social connectedness (DV)?

Thanks in advance

Hi Ashley. Yes, this is possible, but often it means you have a condition known as “inconsistent mediation” which isn’t usually desirable. See this entry on David Kenny’s page:

Or look up “inconsistent mediation” in this reference:

MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593-614.

This is very interesting presentation. i love it.

This is very interesting and educative. I love it.

Hello, you mentioned that for the moderator, it changes the relationship between iv and dv depending on its strength. How would one describe a situation where if the iv is high iv and dv relationship is opposite from when iv is low. And then a 3rd variable maybe the moderator increases dv when iv is low and decreases dv when iv is high.

This isn’t problematic for moderation. Moderation just proposes that the magnitude of the relationship changes as levels of the moderator changes. If the sign flips, probably the original relationship was small. Sometimes people call this a “cross-over” effect, but really, it’s nothing special and can happen in any moderation analysis.

i want to use an independent variable as moderator after this i will have 3 independent variable and 1 dependent variable…. my confusion is do i need to have some past evidence of the X variable moderate the relationship of Y independent variable and Z dependent variable.

Dear Sean It is really helpful as my research model will use mediation. Because I still face difficulty in developing hyphothesis, can you give examples ? Thank you

Hi! is it possible to have all three pathways negative? My regression analysis showed significant negative relationships between x to y, x to m and m to y.

Hi, I have 1 independent variable, 1 dependent variable and 4 mediating variable May I know how many hypothesis should I develop?

Hello I have 4 IV , 1 mediating Variable and 1 DV

My model says that 4 IVs when mediated by 1MV leads to 1 Dv

Pls tell me how to set the hypothesis for mediation

Hi I have 4 IVs ,2 Mediating Variables , 1DV and 3 Outcomes (criterion variables).

Pls can u tell me how many hypotheses to set.

Thankyou in advance

I am in fact happy to read this webpage posts which carries tons of useful information, thanks for providing such data.

I see you don’t monetize savvystatistics.com, don’t waste your traffic, you can earn additional bucks every month with new monetization method. This is the best adsense alternative for any type of website (they approve all websites), for more info simply search in gooogle: murgrabia’s tools

what if the hypothesis and moderator significant in regrestion and insgificant in moderation?

Thank you so much!! Your slide on the mediator variable let me understand!

Very informative material. The author has used very clear language and I would recommend this for any student of research/

Hi Sean, thanks for the nice material. I have a question: for the second type of hypothesis, you state “That is, the relationship is stronger for men than for women”. Based on the illustration, wouldn’t the opposite be true?

Yes, your right! I updated the post to fix the typo, thank you!

I have 3 independent variable one mediator and 2 dependant variable how many hypothesis I have 2 write?

Sounds like 6 mediation hypotheses total:

X1 -> M -> Y1 X2 -> M -> Y1 X3 -> M -> Y1 X1 -> M -> Y2 X2 -> M -> Y2 X3 -> M -> Y2

Clear explanation! Thanks!

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Geektonight

What is Hypothesis? Definition, Meaning, Characteristics, Sources

  • Post last modified: 10 January 2022
  • Reading time: 18 mins read
  • Post category: Research Methodology

what is hypothesis and example

  • What is Hypothesis?

Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.

As an example, if we want to explore whether using a specific teaching method at school will result in better school marks (research question), the hypothesis could be that the mean school marks of students being taught with that specific teaching method will be higher than of those being taught using other methods.

In this example, we stated a hypothesis about the expected differences between groups. Other hypotheses may refer to correlations between variables.

Table of Content

  • 1 What is Hypothesis?
  • 2 Hypothesis Definition
  • 3 Meaning of Hypothesis
  • 4.1 Conceptual Clarity
  • 4.2 Need of empirical referents
  • 4.3 Hypothesis should be specific
  • 4.4 Hypothesis should be within the ambit of the available research techniques
  • 4.5 Hypothesis should be consistent with the theory
  • 4.6 Hypothesis should be concerned with observable facts and empirical events
  • 4.7 Hypothesis should be simple
  • 5.1 Observation
  • 5.2 Analogies
  • 5.4 State of Knowledge
  • 5.5 Culture
  • 5.6 Continuity of Research
  • 6.1 Null Hypothesis
  • 6.2 Alternative Hypothesis

Thus, to formulate a hypothesis, we need to refer to the descriptive statistics (such as the mean final marks), and specify a set of conditions about these statistics (such as a difference between the means, or in a different example, a positive or negative correlation). The hypothesis we formulate applies to the population of interest.

The null hypothesis makes a statement that no difference exists (see Pyrczak, 1995, pp. 75-84).

Hypothesis Definition

A hypothesis is ‘a guess or supposition as to the existence of some fact or law which will serve to explain a connection of facts already known to exist.’ – J. E. Creighton & H. R. Smart

Hypothesis is ‘a proposition not known to be definitely true or false, examined for the sake of determining the consequences which would follow from its truth.’ – Max Black

Hypothesis is ‘a proposition which can be put to a test to determine validity and is useful for further research.’ – W. J. Goode and P. K. Hatt

A hypothesis is a proposition, condition or principle which is assumed, perhaps without belief, in order to draw out its logical consequences and by this method to test its accord with facts which are known or may be determined. – Webster’s New International Dictionary of the English Language (1956)

Meaning of Hypothesis

From the above mentioned definitions of hypothesis, its meaning can be explained in the following ways.

  • At the primary level, a hypothesis is the possible and probable explanation of the sequence of happenings or data.
  • Sometimes, hypothesis may emerge from an imagination, common sense or a sudden event.
  • Hypothesis can be a probable answer to the research problem undertaken for study. 4. Hypothesis may not always be true. It can get disproven. In other words, hypothesis need not always be a true proposition.
  • Hypothesis, in a sense, is an attempt to present the interrelations that exist in the available data or information.
  • Hypothesis is not an individual opinion or community thought. Instead, it is a philosophical means which is to be used for research purpose. Hypothesis is not to be considered as the ultimate objective; rather it is to be taken as the means of explaining scientifically the prevailing situation.

The concept of hypothesis can further be explained with the help of some examples. Lord Keynes, in his theory of national income determination, made a hypothesis about the consumption function. He stated that the consumption expenditure of an individual or an economy as a whole is dependent on the level of income and changes in a certain proportion.

Later, this proposition was proved in the statistical research carried out by Prof. Simon Kuznets. Matthus, while studying the population, formulated a hypothesis that population increases faster than the supply of food grains. Population studies of several countries revealed that this hypothesis is true.

Validation of the Malthus’ hypothesis turned it into a theory and when it was tested in many other countries it became the famous Malthus’ Law of Population. It thus emerges that when a hypothesis is tested and proven, it becomes a theory. The theory, when found true in different times and at different places, becomes the law. Having understood the concept of hypothesis, few hypotheses can be formulated in the areas of commerce and economics.

  • Population growth moderates with the rise in per capita income.
  • Sales growth is positively linked with the availability of credit.
  • Commerce education increases the employability of the graduate students.
  • High rates of direct taxes prompt people to evade taxes.
  • Good working conditions improve the productivity of employees.
  • Advertising is the most effecting way of promoting sales than any other scheme.
  • Higher Debt-Equity Ratio increases the probability of insolvency.
  • Economic reforms in India have made the public sector banks more efficient and competent.
  • Foreign direct investment in India has moved in those sectors which offer higher rate of profit.
  • There is no significant association between credit rating and investment of fund.

Characteristics of Hypothesis

Not all the hypotheses are good and useful from the point of view of research. It is only a few hypotheses satisfying certain criteria that are good, useful and directive in the research work undertaken. The characteristics of such a useful hypothesis can be listed as below:

Conceptual Clarity

Need of empirical referents, hypothesis should be specific, hypothesis should be within the ambit of the available research techniques, hypothesis should be consistent with the theory, hypothesis should be concerned with observable facts and empirical events, hypothesis should be simple.

The concepts used while framing hypothesis should be crystal clear and unambiguous. Such concepts must be clearly defined so that they become lucid and acceptable to everyone. How are the newly developed concepts interrelated and how are they linked with the old one is to be very clear so that the hypothesis framed on their basis also carries the same clarity.

A hypothesis embodying unclear and ambiguous concepts can to a great extent undermine the successful completion of the research work.

A hypothesis can be useful in the research work undertaken only when it has links with some empirical referents. Hypothesis based on moral values and ideals are useless as they cannot be tested. Similarly, hypothesis containing opinions as good and bad or expectation with respect to something are not testable and therefore useless.

For example, ‘current account deficit can be lowered if people change their attitude towards gold’ is a hypothesis encompassing expectation. In case of such a hypothesis, the attitude towards gold is something which cannot clearly be described and therefore a hypothesis which embodies such an unclean thing cannot be tested and proved or disproved. In short, the hypothesis should be linked with some testable referents.

For the successful conduction of research, it is necessary that the hypothesis is specific and presented in a precise manner. Hypothesis which is general, too ambitious and grandiose in scope is not to be made as such hypothesis cannot be easily put to test. A hypothesis is to be based on such concepts which are precise and empirical in nature. A hypothesis should give a clear idea about the indicators which are to be used.

For example, a hypothesis that economic power is increasingly getting concentrated in a few hands in India should enable us to define the concept of economic power. It should be explicated in terms of measurable indicator like income, wealth, etc. Such specificity in the formulation of a hypothesis ensures that the research is practicable and significant.

While framing the hypothesis, the researcher should be aware of the available research techniques and should see that the hypothesis framed is testable on the basis of them. In other words, a hypothesis should be researchable and for this it is important that a due thought has been given to the methods and techniques which can be used to measure the concepts and variables embodied in the hypothesis.

It does not however mean that hypotheses which are not testable with the available techniques of research are not to be made. If the problem is too significant and therefore the hypothesis framed becomes too ambitious and complex, it’s testing becomes possible with the development of new research techniques or the hypothesis itself leads to the development of new research techniques.

A hypothesis must be related to the existing theory or should have a theoretical orientation. The growth of knowledge takes place in the sequence of facts, hypothesis, theory and law or principles. It means the hypothesis should have a correspondence with the existing facts and theory.

If the hypothesis is related to some theory, the research work will enable us to support, modify or refute the existing theory. Theoretical orientation of the hypothesis ensures that it becomes scientifically useful. According to Prof. Goode and Prof. Hatt, research work can contribute to the existing knowledge only when the hypothesis is related with some theory.

This enables us to explain the observed facts and situations and also verify the framed hypothesis. In the words of Prof. Cohen and Prof. Nagel, “hypothesis must be formulated in such a manner that deduction can be made from it and that consequently a decision can be reached as to whether it does or does not explain the facts considered.”

If the research work based on a hypothesis is to be successful, it is necessary that the later is as simple and easy as possible. An ambition of finding out something new may lead the researcher to frame an unrealistic and unclear hypothesis. Such a temptation is to be avoided. Framing a simple, easy and testable hypothesis requires that the researcher is well acquainted with the related concepts.

Sources of Hypothesis

Hypotheses can be derived from various sources. Some of the sources is given below:

Observation

State of knowledge, continuity of research.

Hypotheses can be derived from observation from the observation of price behavior in a market. For example the relationship between the price and demand for an article is hypothesized.

Analogies are another source of useful hypotheses. Julian Huxley has pointed out that casual observations in nature or in the framework of another science may be a fertile source of hypotheses. For example, the hypotheses that similar human types or activities may be found in similar geophysical regions come from plant ecology.

This is one of the main sources of hypotheses. It gives direction to research by stating what is known logical deduction from theory lead to new hypotheses. For example, profit / wealth maximization is considered as the goal of private enterprises. From this assumption various hypotheses are derived’.

An important source of hypotheses is the state of knowledge in any particular science where formal theories exist hypotheses can be deduced. If the hypotheses are rejected theories are scarce hypotheses are generated from conception frameworks.

Another source of hypotheses is the culture on which the researcher was nurtured. Western culture has induced the emergence of sociology as an academic discipline over the past decade, a large part of the hypotheses on American society examined by researchers were connected with violence. This interest is related to the considerable increase in the level of violence in America.

The continuity of research in a field itself constitutes an important source of hypotheses. The rejection of some hypotheses leads to the formulation of new ones capable of explaining dependent variables in subsequent research on the same subject.

Null and Alternative Hypothesis

Null hypothesis.

The hypothesis that are proposed with the intent of receiving a rejection for them are called Null Hypothesis . This requires that we hypothesize the opposite of what is desired to be proved. For example, if we want to show that sales and advertisement expenditure are related, we formulate the null hypothesis that they are not related.

Similarly, if we want to conclude that the new sales training programme is effective, we formulate the null hypothesis that the new training programme is not effective, and if we want to prove that the average wages of skilled workers in town 1 is greater than that of town 2, we formulate the null hypotheses that there is no difference in the average wages of the skilled workers in both the towns.

Since we hypothesize that sales and advertisement are not related, new training programme is not effective and the average wages of skilled workers in both the towns are equal, we call such hypotheses null hypotheses and denote them as H 0 .

Alternative Hypothesis

Rejection of null hypotheses leads to the acceptance of alternative hypothesis . The rejection of null hypothesis indicates that the relationship between variables (e.g., sales and advertisement expenditure) or the difference between means (e.g., wages of skilled workers in town 1 and town 2) or the difference between proportions have statistical significance and the acceptance of the null hypotheses indicates that these differences are due to chance.

As already mentioned, the alternative hypotheses specify that values/relation which the researcher believes hold true. The alternative hypotheses can cover a whole range of values rather than a single point. The alternative hypotheses are denoted by H 1 .

Business Ethics

( Click on Topic to Read )

  • What is Ethics?
  • What is Business Ethics?
  • Values, Norms, Beliefs and Standards in Business Ethics
  • Indian Ethos in Management
  • Ethical Issues in Marketing
  • Ethical Issues in HRM
  • Ethical Issues in IT
  • Ethical Issues in Production and Operations Management
  • Ethical Issues in Finance and Accounting
  • What is Corporate Governance?
  • What is Ownership Concentration?
  • What is Ownership Composition?
  • Types of Companies in India
  • Internal Corporate Governance
  • External Corporate Governance
  • Corporate Governance in India
  • What is Enterprise Risk Management (ERM)?
  • What is Assessment of Risk?
  • What is Risk Register?
  • Risk Management Committee

Corporate social responsibility (CSR)

  • Theories of CSR
  • Arguments Against CSR
  • Business Case for CSR
  • Importance of CSR in India
  • Drivers of Corporate Social Responsibility
  • Developing a CSR Strategy
  • Implement CSR Commitments
  • CSR Marketplace
  • CSR at Workplace
  • Environmental CSR
  • CSR with Communities and in Supply Chain
  • Community Interventions
  • CSR Monitoring
  • CSR Reporting
  • Voluntary Codes in CSR
  • What is Corporate Ethics?

Lean Six Sigma

  • What is Six Sigma?
  • What is Lean Six Sigma?
  • Value and Waste in Lean Six Sigma
  • Six Sigma Team
  • MAIC Six Sigma
  • Six Sigma in Supply Chains
  • What is Binomial, Poisson, Normal Distribution?
  • What is Sigma Level?
  • What is DMAIC in Six Sigma?
  • What is DMADV in Six Sigma?
  • Six Sigma Project Charter
  • Project Decomposition in Six Sigma
  • Critical to Quality (CTQ) Six Sigma
  • Process Mapping Six Sigma
  • Flowchart and SIPOC
  • Gage Repeatability and Reproducibility
  • Statistical Diagram
  • Lean Techniques for Optimisation Flow
  • Failure Modes and Effects Analysis (FMEA)
  • What is Process Audits?
  • Six Sigma Implementation at Ford
  • IBM Uses Six Sigma to Drive Behaviour Change
  • Research Methodology
  • What is Research?
  • Sampling Method
  • Research Methods
  • Data Collection in Research

Methods of Collecting Data

  • Application of Business Research
  • Levels of Measurement
  • What is Sampling?

Hypothesis Testing

  • Research Report
  • What is Management?
  • Planning in Management
  • Decision Making in Management
  • What is Controlling?
  • What is Coordination?
  • What is Staffing?
  • Organization Structure
  • What is Departmentation?
  • Span of Control
  • What is Authority?
  • Centralization vs Decentralization
  • Organizing in Management
  • Schools of Management Thought
  • Classical Management Approach
  • Is Management an Art or Science?
  • Who is a Manager?

Operations Research

  • What is Operations Research?
  • Operation Research Models
  • Linear Programming
  • Linear Programming Graphic Solution
  • Linear Programming Simplex Method
  • Linear Programming Artificial Variable Technique
  • Duality in Linear Programming
  • Transportation Problem Initial Basic Feasible Solution
  • Transportation Problem Finding Optimal Solution
  • Project Network Analysis with Critical Path Method
  • Project Network Analysis Methods
  • Project Evaluation and Review Technique (PERT)
  • Simulation in Operation Research
  • Replacement Models in Operation Research

Operation Management

  • What is Strategy?
  • What is Operations Strategy?
  • Operations Competitive Dimensions
  • Operations Strategy Formulation Process
  • What is Strategic Fit?
  • Strategic Design Process
  • Focused Operations Strategy
  • Corporate Level Strategy
  • Expansion Strategies
  • Stability Strategies
  • Retrenchment Strategies
  • Competitive Advantage
  • Strategic Choice and Strategic Alternatives
  • What is Production Process?
  • What is Process Technology?
  • What is Process Improvement?
  • Strategic Capacity Management
  • Production and Logistics Strategy
  • Taxonomy of Supply Chain Strategies
  • Factors Considered in Supply Chain Planning
  • Operational and Strategic Issues in Global Logistics
  • Logistics Outsourcing Strategy
  • What is Supply Chain Mapping?
  • Supply Chain Process Restructuring
  • Points of Differentiation
  • Re-engineering Improvement in SCM
  • What is Supply Chain Drivers?
  • Supply Chain Operations Reference (SCOR) Model
  • Customer Service and Cost Trade Off
  • Internal and External Performance Measures
  • Linking Supply Chain and Business Performance
  • Netflix’s Niche Focused Strategy
  • Disney and Pixar Merger
  • Process Planning at Mcdonald’s

Service Operations Management

  • What is Service?
  • What is Service Operations Management?
  • What is Service Design?
  • Service Design Process
  • Service Delivery
  • What is Service Quality?
  • Gap Model of Service Quality
  • Juran Trilogy
  • Service Performance Measurement
  • Service Decoupling
  • IT Service Operation
  • Service Operations Management in Different Sector

Procurement Management

  • What is Procurement Management?
  • Procurement Negotiation
  • Types of Requisition
  • RFX in Procurement
  • What is Purchasing Cycle?
  • Vendor Managed Inventory
  • Internal Conflict During Purchasing Operation
  • Spend Analysis in Procurement
  • Sourcing in Procurement
  • Supplier Evaluation and Selection in Procurement
  • Blacklisting of Suppliers in Procurement
  • Total Cost of Ownership in Procurement
  • Incoterms in Procurement
  • Documents Used in International Procurement
  • Transportation and Logistics Strategy
  • What is Capital Equipment?
  • Procurement Process of Capital Equipment
  • Acquisition of Technology in Procurement
  • What is E-Procurement?
  • E-marketplace and Online Catalogues
  • Fixed Price and Cost Reimbursement Contracts
  • Contract Cancellation in Procurement
  • Ethics in Procurement
  • Legal Aspects of Procurement
  • Global Sourcing in Procurement
  • Intermediaries and Countertrade in Procurement

Strategic Management

  • What is Strategic Management?
  • What is Value Chain Analysis?
  • Mission Statement
  • Business Level Strategy
  • What is SWOT Analysis?
  • What is Competitive Advantage?
  • What is Vision?
  • What is Ansoff Matrix?
  • Prahalad and Gary Hammel
  • Strategic Management In Global Environment
  • Competitor Analysis Framework
  • Competitive Rivalry Analysis
  • Competitive Dynamics
  • What is Competitive Rivalry?
  • Five Competitive Forces That Shape Strategy
  • What is PESTLE Analysis?
  • Fragmentation and Consolidation Of Industries
  • What is Technology Life Cycle?
  • What is Diversification Strategy?
  • What is Corporate Restructuring Strategy?
  • Resources and Capabilities of Organization
  • Role of Leaders In Functional-Level Strategic Management
  • Functional Structure In Functional Level Strategy Formulation
  • Information And Control System
  • What is Strategy Gap Analysis?
  • Issues In Strategy Implementation
  • Matrix Organizational Structure
  • What is Strategic Management Process?

Supply Chain

  • What is Supply Chain Management?
  • Supply Chain Planning and Measuring Strategy Performance
  • What is Warehousing?
  • What is Packaging?
  • What is Inventory Management?
  • What is Material Handling?
  • What is Order Picking?
  • Receiving and Dispatch, Processes
  • What is Warehouse Design?
  • What is Warehousing Costs?

You Might Also Like

What is descriptive research types, features, cross-sectional and longitudinal research, what is measure of dispersion, what is scaling techniques types, classifications, techniques, what is causal research advantages, disadvantages, how to perform, what is research problem components, identifying, formulating,, research process | types, what is literature review importance, functions, process,, what is measurement scales, types, criteria and developing measurement tools, what is research design types, leave a reply cancel reply.

You must be logged in to post a comment.

World's Best Online Courses at One Place

We’ve spent the time in finding, so you can spend your time in learning

Digital Marketing

Personal Growth

what is hypothesis and example

what is hypothesis and example

Development

what is hypothesis and example

what is hypothesis and example

what is hypothesis and example

Pardon Our Interruption

As you were browsing something about your browser made us think you were a bot. There are a few reasons this might happen:

  • You've disabled JavaScript in your web browser.
  • You're a power user moving through this website with super-human speed.
  • You've disabled cookies in your web browser.
  • A third-party browser plugin, such as Ghostery or NoScript, is preventing JavaScript from running. Additional information is available in this support article .

To regain access, please make sure that cookies and JavaScript are enabled before reloading the page.

what is hypothesis and example

Difference Between | Descriptive Analysis and Comparisons

Search form, difference between hypothesis and assumption.

Key Difference: A hypothesis is an uncertain supposition or explanation regarding a phenomenon or event. It is considered to be true by the researcher. An assumption is also a kind of belief which is considered to be true.  A hypothesis must always go through the process of verification and investigation. On the other hand, an assumption may or may not be verified or investigated. In research, assumption denotes the existence of the relationship between the variables. A hypothesis establishes the relationship determined by an assumption.

what is hypothesis and example

According to Tuckman, these three criteria should be kept in mind before stating a hypothesis –

 A good hypothesis statement should

  • conjecture the direction of the relationship between two or more  variables,
  • be stated clearly and unambiguously in the form of a  declarative sentence, and
  • be testable; that is, it should allow restatement  in an operational form that can then be evaluated based on data

what is hypothesis and example

'My assumption is that tomorrow Mary will bring snacks for all'.

Assumption and hypothesis often create confusion as both are widely used in the field of research. An assumption is about taking things for granted, without having any firm explanation behind it. On the other hand, hypothesis is a type of assumption for a certain purpose of argument. However, both are not already proved.  An assumption is always assumed to be true. On the other hand, a hypothesis is regarding statements that need certain investigation. In research, assumptions are formulated and on the basis of the assumptions certain hypothesis statements are declared. Thus, a hypothesis can also be considered as an assumption that is taken to be true unless proven otherwise.

Comparison between Hypothesis and Assumption –

 

Definition

A Hypothesis is an uncertain explanation regarding a phenomenon or event. It is widely used as a base for conducting tests and the results of the tests determine the acceptance or rejection of the hypothesis.

An assumption is also a kind of belief which is considered to be true. An assumption may or may not be verified or investigated. In research, assumption denotes the existence of the relationship between the variables.

Origin

The term derives from the Greek, hypotithenai meaning "to put under" or "to suppose."

from Late Latin assumption-, assumptio taking up, from Latin assumere.

Proving methodology

Various experiments can lead to various results. Thus a hypothesis can be proved or rejected depending upon the method used by the scientists.

General assumptions may or may not require any methods for verification or acceptance. Research assumptions are generally proved by forming hypothesis based on them.

Supported by Reasoning

Yes

Usually

Example

The higher time the students spend on their studies, the better they achieve tests and score better marks.

There is a correlation between the time period to study and marks attained.

Image Courtesy: biology.iupui.edu, b2b-im.com

Add new comment

Copyright © 2024, Difference Between | Descriptive Analysis and Comparisons

Javatpoint Logo

Machine Learning

Artificial Intelligence

Control System

Supervised Learning

Classification, miscellaneous, related tutorials.

Interview Questions

JavaTpoint

The hypothesis is a common term in Machine Learning and data science projects. As we know, machine learning is one of the most powerful technologies across the world, which helps us to predict results based on past experiences. Moreover, data scientists and ML professionals conduct experiments that aim to solve a problem. These ML professionals and data scientists make an initial assumption for the solution of the problem.

This assumption in Machine learning is known as Hypothesis. In Machine Learning, at various times, Hypothesis and Model are used interchangeably. However, a Hypothesis is an assumption made by scientists, whereas a model is a mathematical representation that is used to test the hypothesis. In this topic, "Hypothesis in Machine Learning," we will discuss a few important concepts related to a hypothesis in machine learning and their importance. So, let's start with a quick introduction to Hypothesis.

It is just a guess based on some known facts but has not yet been proven. A good hypothesis is testable, which results in either true or false.

: Let's understand the hypothesis with a common example. Some scientist claims that ultraviolet (UV) light can damage the eyes then it may also cause blindness.

In this example, a scientist just claims that UV rays are harmful to the eyes, but we assume they may cause blindness. However, it may or may not be possible. Hence, these types of assumptions are called a hypothesis.

The hypothesis is one of the commonly used concepts of statistics in Machine Learning. It is specifically used in Supervised Machine learning, where an ML model learns a function that best maps the input to corresponding outputs with the help of an available dataset.

There are some common methods given to find out the possible hypothesis from the Hypothesis space, where hypothesis space is represented by and hypothesis by Th ese are defined as follows:

It is used by supervised machine learning algorithms to determine the best possible hypothesis to describe the target function or best maps input to output.

It is often constrained by choice of the framing of the problem, the choice of model, and the choice of model configuration.

. It is primarily based on data as well as bias and restrictions applied to data.

Hence hypothesis (h) can be concluded as a single hypothesis that maps input to proper output and can be evaluated as well as used to make predictions.

The hypothesis (h) can be formulated in machine learning as follows:

Where,

Y: Range

m: Slope of the line which divided test data or changes in y divided by change in x.

x: domain

c: intercept (constant)

: Let's understand the hypothesis (h) and hypothesis space (H) with a two-dimensional coordinate plane showing the distribution of data as follows:

Hypothesis space (H) is the composition of all legal best possible ways to divide the coordinate plane so that it best maps input to proper output.

Further, each individual best possible way is called a hypothesis (h). Hence, the hypothesis and hypothesis space would be like this:

Similar to the hypothesis in machine learning, it is also considered an assumption of the output. However, it is falsifiable, which means it can be failed in the presence of sufficient evidence.

Unlike machine learning, we cannot accept any hypothesis in statistics because it is just an imaginary result and based on probability. Before start working on an experiment, we must be aware of two important types of hypotheses as follows:

A null hypothesis is a type of statistical hypothesis which tells that there is no statistically significant effect exists in the given set of observations. It is also known as conjecture and is used in quantitative analysis to test theories about markets, investment, and finance to decide whether an idea is true or false. An alternative hypothesis is a direct contradiction of the null hypothesis, which means if one of the two hypotheses is true, then the other must be false. In other words, an alternative hypothesis is a type of statistical hypothesis which tells that there is some significant effect that exists in the given set of observations.

The significance level is the primary thing that must be set before starting an experiment. It is useful to define the tolerance of error and the level at which effect can be considered significantly. During the testing process in an experiment, a 95% significance level is accepted, and the remaining 5% can be neglected. The significance level also tells the critical or threshold value. For e.g., in an experiment, if the significance level is set to 98%, then the critical value is 0.02%.

The p-value in statistics is defined as the evidence against a null hypothesis. In other words, P-value is the probability that a random chance generated the data or something else that is equal or rarer under the null hypothesis condition.

If the p-value is smaller, the evidence will be stronger, and vice-versa which means the null hypothesis can be rejected in testing. It is always represented in a decimal form, such as 0.035.

Whenever a statistical test is carried out on the population and sample to find out P-value, then it always depends upon the critical value. If the p-value is less than the critical value, then it shows the effect is significant, and the null hypothesis can be rejected. Further, if it is higher than the critical value, it shows that there is no significant effect and hence fails to reject the Null Hypothesis.

In the series of mapping instances of inputs to outputs in supervised machine learning, the hypothesis is a very useful concept that helps to approximate a target function in machine learning. It is available in all analytics domains and is also considered one of the important factors to check whether a change should be introduced or not. It covers the entire training data sets to efficiency as well as the performance of the models.

Hence, in this topic, we have covered various important concepts related to the hypothesis in machine learning and statistics and some important parameters such as p-value, significance level, etc., to understand hypothesis concepts in a better way.





Youtube

  • Send your Feedback to [email protected]

Help Others, Please Share

facebook

Learn Latest Tutorials

Splunk tutorial

Transact-SQL

Tumblr tutorial

Reinforcement Learning

R Programming tutorial

R Programming

RxJS tutorial

React Native

Python Design Patterns

Python Design Patterns

Python Pillow tutorial

Python Pillow

Python Turtle tutorial

Python Turtle

Keras tutorial

Preparation

Aptitude

Verbal Ability

Interview Questions

Company Questions

Trending Technologies

Artificial Intelligence

Cloud Computing

Hadoop tutorial

Data Science

Angular 7 Tutorial

B.Tech / MCA

DBMS tutorial

Data Structures

DAA tutorial

Operating System

Computer Network tutorial

Computer Network

Compiler Design tutorial

Compiler Design

Computer Organization and Architecture

Computer Organization

Discrete Mathematics Tutorial

Discrete Mathematics

Ethical Hacking

Ethical Hacking

Computer Graphics Tutorial

Computer Graphics

Software Engineering

Software Engineering

html tutorial

Web Technology

Cyber Security tutorial

Cyber Security

Automata Tutorial

C Programming

C++ tutorial

Data Mining

Data Warehouse Tutorial

Data Warehouse

RSS Feed

  • Have your assignments done by seasoned writers. 24/7
  • Contact us:
  • +1 (213) 221-0069
  • [email protected]

Thesis vs Hypothesis vs Theory: the Differences and examples

Thesis vs Hypothesis vs Theory: the Differences and examples

thesis hypothesis and theory

thesis hypothesis and theory

Many students may have a hard time understanding the differences between a thesis, a hypothesis, and a theory. It is important to understand their differences. Such an understanding will be instrumental.

More so, when writing complex research papers that require a thesis that has a hypothesis and utilizes theories. We have gathered from responses of our college writing service that the difference between the three is confusing.

what is hypothesis and example

That being said, this article is meant to explain the differences between a thesis, a hypothesis, and a theory. 

Difference between Hypothesis and Thesis

There are major differences between hypothesis and thesis. While they seem to be related on the face, their differences are huge both in concept and practice.

A hypothesis is a proposed explanation of something or a phenomenon. A scientific hypothesis uses a scientific method that requires any hypothesis to be tested. As such, scientists and researchers base their hypothesis on observations that have been previously made and that which cannot be explained by the available or prevailing scientific theories.

From the definition of a hypothesis, you can see that theories must be included in any scientific method. This is the reason why this article tries to differentiate a thesis, a hypothesis, and a theory. 

Moving forward, a thesis can be defined as a written piece of academic work that is submitted by students to attain a university degree. However, on a smaller scale, there is something that is referred to as a thesis statement.

This is written at the introduction of a research paper or essay that is supported by a credible argument. The link between a hypothesis and thesis is that a thesis is a distinction or an affirmation of the hypothesis.

What this means is that whenever a research paper contains a hypothesis, there should be a thesis that validates it. 

People Also Read: Is using an Essay Writing Service Cheating? Is it Ethical?

What is a Hypothesis?

A hypothesis can be defined as the proposed or suggested explanation for an occurrence, something, or a phenomenon. It should be testable through scientific methods. The reason why scholarly works should have a hypothesis is that the observed phenomena could not be explained using the prevailing scientific theories hence the reason why it should be tested. 

Testing the hypothesis may result in the development of new or improved scientific theories that are beneficial to the discipline and society in general. 

What is a Thesis?

A thesis is a written piece of academic work that is submitted by students to attain a university degree. When a thesis is used as a stand-alone word, it denotes academic papers written by university students. It is mostly written by those pursuing postgraduate degrees, at the end of their courses. They demonstrate their proficiency in their disciplines and the topics they have selected for research. 

However, when a thesis is used to refer to a statement, it denotes the statement that is written at the introduction of a research paper or essay. A thesis is supported by a credible argument.

Every research paper must have a thesis statement that acts as a guide to what the research will be all about. It is possible to receive very poor grades or even score a zero if your research paper lacks the thesis statement. 

What is a Theory?

A theory can be defined as a rational form of abstract perspectives or thinking concerning the results of such thinking or a phenomenon. The process of rational and contemplative thinking is mostly associated with processes such as research or observational study.

As such, a theory can be considered to belong to both scientific and non-scientific disciplines. Theories can also belong to no discipline.

From a modernistic scientific approach, a theory can mean scientific theories that have been well confirmed to explain nature and that are created in such a way that they are consistent with the standard scientific method. A theory should fulfill all the criteria required by modern-day science. 

A theory should be described in a way that scientific tests that have been conducted can provide empirical support or contradiction to the theory.

Because of the nature by which scientific theories are developed, they tend to be the most rigorous, reliable, and comprehensive when it comes to describing and supporting scientific knowledge. 

The connection between a theory and a hypothesis is that when a theory has not yet been proven, it can be referred to as a hypothesis.

The thing about theories is that they are not meant to help the scientist or researcher reach a particular goal. Rather, a theory is meant to guide the process of finding facts about a phenomenon or an observation. 

People Also Read: How to Use Personal Experience in Research Paper or Essay

Difference between a Theory and Thesis

A theory is a rational form of abstract perspectives or thinking concerning the results of such thinking or a phenomenon. The process of rational and contemplative thinking is mostly associated with processes such as research or observational study. On the other hand, a thesis is a written piece of academic work that is submitted by students to attain a university degree.

It denotes academic papers that are written by students in the university, especially those pursuing postgraduate degrees, at the end of their courses to demonstrate their proficiency in their disciplines and the topics they have selected for research. 

To understand the application of these, read our guide on the difference between a research paper and a thesis proposal to get a wider view.

How to write a Good Hypothesis

1. asking a question.

Asking a question is the first step in the scientific method and the question should be based on  who, what, where, when, why,  and  how . The question should be focused, specific, and researchable.

2. Gathering preliminary research 

This is the process of collecting relevant data. It can be done by researching academic journals, conducting case studies, observing phenomena, and conducting experiments. 

3. Formulating an answer

When the research is completed, you should think of how best to answer the question and defend your position. The answer to your question should be objective. 

4. Writing the hypothesis

When your answer is ready, you can move to the next step of formulating the hypothesis. A good hypothesis should contain relevant variables, predicted outcomes, and a study group that can include non-human things. The hypothesis should not be a question but a complete statement. 

5. Refining the hypothesis

Though you may skip this step, it is advisable to include it because your study may involve two groups or be a correlational study. Refining the hypothesis will ensure that you have stated the difference or relationship you expect to find. 

6. Creating a null and alternative hypotheses

A null hypothesis (H0) will postulate that there is no evidence to support the difference. On the other hand, an alternative hypothesis (H1) posits that there is evidence in support of the difference. 

People Also Read: Research Paper Graph: How to insert Graphs, Tables & Figures

Frequently Asked Questions

Difference between thesis and hypothesis example.

Thesis:  High levels of alcohol consumption have detrimental effects on your health, such as weight gain, heart disease, and liver complications.

Hypothesis:  The people who consume high levels of alcohol experience detrimental effects on their health such as weight gain, heart disease, and liver complications. 

What is the difference between a summary and a thesis statement?

A summary is a brief account or statement of the main points from the researches. A thesis statement is a statement that is written at the end of the introduction of a research paper or essay that summarizes the main claims of the paper. 

Difference between hypothesis and statement of the problem

A hypothesis can be defined as the proposed or suggested explanation for an occurrence, something, or a phenomenon. The same should be testable through scientific methods. Conversely, a statement of a problem is a concise description of the issue to be addressed on how it can be improved. 

Josh Jasen

When not handling complex essays and academic writing tasks, Josh is busy advising students on how to pass assignments. In spare time, he loves playing football or walking with his dog around the park.

Related posts

Titles for Essay about Yourself

Titles for Essay about Yourself

Good Titles for Essays about yourself: 31 Personal Essay Topics

How to Write a Diagnostic Essay

How to Write a Diagnostic Essay

How to Write a Diagnostic Essay: Meaning and Topics Example

How Scantron Detects Cheating

How Scantron Detects Cheating

Scantron Cheating: How it Detects Cheating and Tricks Students Use

Universal source of knowledge

What is a hypothesis and how is it used?

Table of Contents

  • 1 What is a hypothesis and how is it used?
  • 2 What is hypotheses and example?
  • 3 How do you structure a hypothesis?
  • 4 What is the format of a hypothesis?
  • 5 How do you use hypothesis in research?
  • 6 What are some examples of a good hypothesis?
  • 7 What are the steps in a hypothesis?

A hypothesis is used in an experiment to define the relationship between two variables. The purpose of a hypothesis is to find the answer to a question. A formalized hypothesis will force us to think about what results we should look for in an experiment. The first variable is called the independent variable.

What is a hypothesis and what form does it take?

A hypothesis is usually written in the form of an if/then statement, according to the University of California. This statement gives a possibility (if) and explains what may happen because of the possibility (then). The statement could also include “may.”

What is hypotheses and example?

A hypothesis has classical been referred to as an educated guess. When we use this term we are actually referring to a hypothesis. For example, someone might say, “I have a theory about why Jane won’t go out on a date with Billy.” Since there is no data to support this explanation, this is actually a hypothesis.

What is the basic format of the hypothesis?

Here are examples of a scientific hypothesis. Although you could state a scientific hypothesis in various ways, most hypotheses are either “If, then” statements or forms of the null hypothesis. The null hypothesis is sometimes called the “no difference” hypothesis.

How do you structure a hypothesis?

However, there are some important things to consider when building a compelling hypothesis.

  • State the problem that you are trying to solve. Make sure that the hypothesis clearly defines the topic and the focus of the experiment.
  • Try to write the hypothesis as an if-then statement.
  • Define the variables.

What is hypothesis in research paper?

A research hypothesis is a statement of expectation or prediction that will be tested by research. Before formulating your research hypothesis, read about the topic of interest to you. In your hypothesis, you are predicting the relationship between variables.

What is the format of a hypothesis?

A hypothesis often follows a basic format of “If {this happens} then {this will happen}.” One way to structure your hypothesis is to describe what will happen to the dependent variable if you make changes to the independent variable.

What is research hypothesis example?

For example, a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states, “This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived.”

How do you use hypothesis in research?

How to Formulate an Effective Research Hypothesis

How do you start a hypothesis?

What are some examples of a good hypothesis?

Examples of Hypothesis: If I replace the battery in my car, then my car will get better gas mileage. If I eat more vegetables, then I will lose weight faster. If I add fertilizer to my garden, then my plants will grow faster. If I brush my teeth every day, then I will not develop cavities. If I take my vitamins every day, then I will not feel tired.

How do you propose a hypothesis?

What are the steps in a hypothesis?

  • ← Is it safe to eat an egg that has a small crack in it?
  • What are the numbers on Ralph Lauren? →

Privacy Overview

CookieDurationDescription
cookielawinfo-checkbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checkbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
  • School Guide
  • Mathematics
  • Number System and Arithmetic
  • Trigonometry
  • Probability
  • Mensuration
  • Maths Formulas
  • Class 8 Maths Notes
  • Class 9 Maths Notes
  • Class 10 Maths Notes
  • Class 11 Maths Notes
  • Class 12 Maths Notes

Alternative Hypothesis: Definition, Types and Examples

In statistical hypothesis testing, the alternative hypothesis is an important proposition in the hypothesis test. The goal of the hypothesis test is to demonstrate that in the given condition, there is sufficient evidence supporting the credibility of the alternative hypothesis instead of the default assumption made by the null hypothesis.

Null-Hypothesis-and-Alternative-Hypothesis

Alternative Hypotheses

Both hypotheses include statements with the same purpose of providing the researcher with a basic guideline. The researcher uses the statement from each hypothesis to guide their research. In statistics, alternative hypothesis is often denoted as H a or H 1 .

Table of Content

What is a Hypothesis?

Alternative hypothesis, types of alternative hypothesis, difference between null and alternative hypothesis, formulating an alternative hypothesis, example of alternative hypothesis, application of alternative hypothesis.

“A hypothesis is a statement of a relationship between two or more variables.” It is a working statement or theory that is based on insufficient evidence.

While experimenting, researchers often make a claim, that they can test. These claims are often based on the relationship between two or more variables. “What causes what?” and “Up to what extent?” are a few of the questions that a hypothesis focuses on answering. The hypothesis can be true or false, based on complete evidence.

While there are different hypotheses, we discuss only null and alternate hypotheses. The null hypothesis, denoted H o , is the default position where variables do not have a relation with each other. That means the null hypothesis is assumed true until evidence indicates otherwise. The alternative hypothesis, denoted H 1 , on the other hand, opposes the null hypothesis. It assumes a relation between the variables and serves as evidence to reject the null hypothesis.

Example of Hypothesis:

Mean age of all college students is 20.4 years. (simple hypothesis).

An Alternative Hypothesis is a claim or a complement to the null hypothesis. If the null hypothesis predicts a statement to be true, the Alternative Hypothesis predicts it to be false. Let’s say the null hypothesis states there is no difference between height and shoe size then the alternative hypothesis will oppose the claim by stating that there is a relation.

We see that the null hypothesis assumes no relationship between the variables whereas an alternative hypothesis proposes a significant relation between variables. An alternative theory is the one tested by the researcher and if the researcher gathers enough data to support it, then the alternative hypothesis replaces the null hypothesis.

Null and alternative hypotheses are exhaustive, meaning that together they cover every possible outcome. They are also mutually exclusive, meaning that only one can be true at a time.

There are a few types of alternative hypothesis that we will see:

1. One-tailed test H 1 : A one-tailed alternative hypothesis focuses on only one region of rejection of the sampling distribution. The region of rejection can be upper or lower.

  • Upper-tailed test H 1 : Population characteristic > Hypothesized value
  • Lower-tailed test H 1 : Population characteristic < Hypothesized value

2. Two-tailed test H 1 : A two-tailed alternative hypothesis is concerned with both regions of rejection of the sampling distribution.

3. Non-directional test H 1 : A non-directional alternative hypothesis is not concerned with either region of rejection; rather, it is only concerned that null hypothesis is not true.

4. Point test H 1 : Point alternative hypotheses occur when the hypothesis test is framed so that the population distribution under the alternative hypothesis is a fully defined distribution, with no unknown parameters; such hypotheses are usually of no practical interest but are fundamental to theoretical considerations of statistical inference and are the basis of the Neyman–Pearson lemma.

the differences between Null Hypothesis and Alternative Hypothesis is explained in the table below:

Null Hypothesis(H )

Alternative Hypothesis(H )

Definition

A default statement that states no relationship between variables.

A claim that assumes a relationship between variables.

Denoted by

H

H or H

In Research

States a presumption made before-hand

States the potential outcome a researcher may expect

Symbols Used

Equality Symbol (=, ≥, or ≤)

Inequality Symbol (≠, <, or >)

Example

Experience matters in a tech-job

Experience does not matter in a tech-job

Formulating an alternative hypothesis means identifying the relationships, effects or condition being studied. Based on the data we conclude that there is a different inference from the null-hypothesis being considered.

  • Understand the null hypothesis.
  • Consider the alternate hypothesis
  • Choose the type of alternate hypothesis (one-tailed or two-tailed)

Alternative hypothesis must be true when the null hypothesis is false. When trying to identify the information need for alternate hypothesis statement, look for the following phrases:

  • “Is it reasonable to conclude…”
  • “Is there enough evidence to substantiate…”
  • “Does the evidence suggest…”
  • “Has there been a significant…”

When alternative hypotheses in mathematical terms, they always include an inequality ( usually ≠, but sometimes < or >) . When writing the alternate hypothesis, make sure it never includes an “=” symbol.

To help you write your hypotheses, you can use the template sentences below.

Does independent variable affect dependent variable?

  • Null Hypothesis (H 0 ): Independent variable does not affect dependent variable.
  • Alternative Hypothesis (H a ): Independent variable affects dependent variable.

Various examples of Alternative Hypothesis includes:

Two-Tailed Example

  • Research Question : Do home games affect a team’s performance?
  • Null-Hypothesis: Home games do not affect a team’s performance.
  • Alternative Hypothesis: Home games have an effect on team’s performance.
  • Research Question: Does sleeping less lead to depression?
  • Null-Hypothesis: Sleeping less does not have an effect on depression.
  • Alternative Hypothesis : Sleeping less has an effect on depression.

One-Tailed Example

  • Research Question: Are candidates with experience likely to get a job?
  • Null-Hypothesis: Experience does not matter in getting a job.
  • Alternative Hypothesis: Candidates with work experience are more likely to receive an interview.
  • Alternative Hypothesis : Teams with home advantage are more likely to win a match.

Some applications of Alternative Hypothesis includes:

  • Rejecting Null-Hypothesis : A researcher performs additional research to find flaws in the null hypothesis. Following the research, which uses the alternative hypothesis as a guide, they may decide whether they have enough evidence to reject the null hypothesis.
  • Guideline for Research : An alternative and null hypothesis include statements with the same purpose of providing the researcher with a basic guideline. The researcher uses the statement from each hypothesis to guide their research.
  • New Theories : Alternative hypotheses can provide the opportunity to discover new theories that a researcher can use to disprove an existing theory that may not have been backed up by evidence.

We defined the relationship that exist between null-hypothesis and alternative hypothesis. While the null hypothesis is always a default assumption about our test data, the alternative hypothesis puts in all the effort to make sure the null hypothesis is disproved.

Null-hypothesis always explores new relationships between the independent variables to find potential outcomes from our test data. We should note that for every null hypothesis, one or more alternate hypotheses can be developed.

Also Check:

Mathematics Maths Formulas Branches of Mathematics

FAQs on Alternative Hypothesis

What is hypothesis.

A hypothesis is a statement of a relationship between two or more variables.” It is a working statement or theory that is based on insufficient evidence.

What is an Alternative Hypothesis?

Alternative hypothesis, denoted by H 1 , opposes the null-hypothesis. It assumes a relation between the variables and serves as an evidence to reject the null-hypothesis.

What is the Difference between Null-Hypothesis and Alternative Hypothesis?

Null hypothesis is the default claim that assumes no relationship between variables while alternative hypothesis is the opposite claim which considers statistical significance between the variables.

What is Alternative and Experimental Hypothesis?

Null hypothesis (H 0 ) states there is no effect or difference, while the alternative hypothesis (H 1 or H a ) asserts the presence of an effect, difference, or relationship between variables. In hypothesis testing, we seek evidence to either reject the null hypothesis in favor of the alternative hypothesis or fail to do so.

Please Login to comment...

Similar reads.

  • School Learning
  • Math-Statistics
  • California Lawmakers Pass Bill to Limit AI Replicas
  • Best 10 IPTV Service Providers in Germany
  • Python 3.13 Releases | Enhanced REPL for Developers
  • IPTV Anbieter in Deutschland - Top IPTV Anbieter Abonnements
  • Content Improvement League 2024: From Good To A Great Article

Improve your Coding Skills with Practice

 alt=

What kind of Experience do you want to share?

Photo of a page of random text

Is legal jargon actually a ‘magic spell’? Science says maybe

what is hypothesis and example

Lecturer in Computational Cognitive Science, The University of Melbourne

Disclosure statement

Francis Mollica does not work for, consult, own shares in or receive funding from any company or organisation that would benefit from this article, and has disclosed no relevant affiliations beyond their academic appointment.

University of Melbourne provides funding as a founding partner of The Conversation AU.

View all partners

Legal language, or “legalese”, is notoriously hard to understand. Legalese contains more difficult linguistic structures and unusual word choices than most other styles of writing, including non-fiction, news media and even complex academic texts.

The convoluted structure of many legal sentences can make it tough to understand and remember legal obligations. Even lawyers don’t like legal language . So why does it work this way?

In a new study with my colleagues Eric Martínez (University of Chicago) and Edward Gibson (MIT), we found that even laypeople resort to legalese when asked to write laws – which suggests the complexity of legal language may be a kind of ritual that helps give the law its power.

Stuffing sentences inside other sentences

One of the main reasons readers struggle with legal texts is a particular linguistic feature called “centre embedding”.

Centre embedding occurs when one sentence is placed inside another sentence. For example, in the sentence “ the cat that chased the mouse avoided the dog ” the sentence “ the cat chased the mouse ” is placed into the middle of the sentence “ the cat avoided the dog ”.

While this example sentence is fairly short, the sentences in legalese are often much longer. Take for example this drunk-driving law from Massachusetts, in which we bold the main sentence:

Whoever , upon any way or in any place to which the public has a right of access, or upon any way or in any place to which members of the public have access as invitees or licensees, operates a motor vehicle with a percentage, by weight, of alcohol in their blood of eight one-hundredths or greater, or while under the influence of intoxicating liquor, or of marijuana, narcotic drugs, depressants, or stimulant substances, all as defined in section one of chapter ninety-four C, or while under the influence from smelling or inhaling the fumes of any substance having the property of releasing toxic vapors as defined in section 18 of chapter 270 shall be punished by a fine of not less than five hundred nor more than five thousand dollars or by imprisonment for not more than two and one-half years, or both such fine and imprisonment .“

Centre-embedded sentences are difficult to process because readers have to remember what happened in the outside (bold) sentence while they’re reading the inside sentence. The reading difficulty increases with the distance between the words that depend on each other. (In the quoted sentence above, that’s ” Whoever “ and ” shall “.)

Stubbornly convoluted

In our new study , we analysed the 2021 edition of the US legal code, the official compilation of all federal legislation currently in force. We then compared the results with other genres in a representative body of writing in English.

We found centre embedding is far more common in these laws than in other kinds of text.

Two charts showing centre-embedding is far more common in laws than other texts.

We also found the "dependency length” – the distance between words that depend on each other – was also much longer.

Two charts showing the dependency length is far longer in laws than other texts.

In the United States (and elsewhere), there have been repeated efforts to write laws in “plain language”. However, our earlier research has found that the prevalence of centre embedding and other difficult linguistic structures in US law has changed little since at least 1950.

Why do lawyers use legalese?

Why is legal language so resistant to change? To find out, we need to know why lawyers are using legalese in the first place.

Perhaps laws written in legalese are more enforceable than simpler texts, or maybe writing in complex language improves a lawyer’s career prospects or makes clients trust them more. These don’t seem to be the case.

Research has shown that lawyers believe texts written in legalese are no more enforceable than plain-English texts with the same content. They also believe using plain English is likely to improve their career prospects and make clients happier.

Two more possible reasons

We also investigated two more possible reasons for using legalese.

The first is the “copy and edit” hypothesis: because legal contracts often address similar circumstances to other contracts, lawyers may copy templates and simply edit the details. Difficult structures such as centre embedding might be unconsciously copied in the template, or added as the lawyer iteratively edits drafts for their client.

The second is the “magic spell” hypothesis. Much like a magic spell, the purpose of legal language is to change the world rather than simply describe it.

This kind of “performative language” is often accompanied by a ritual or some distinctive linguistic feature. Magic spells, for instance, might be highlighted with rhyme (“double, double, toil and trouble”) or archaic roots (“wingardium leviosa”).

According to this hypothesis, difficult structures such as centre embedding may be used to highlight the performative nature of legal text.

The magic spell hypothesis

To test these hypotheses, we provided a group of 286 non-lawyers the legal content from US laws and asked them to write either laws, stories about breaking the law, or helpful explanations of a law to a tourist.

For half of the trials, the complete legal content was provided to the participant from the start. On the other trials, we hid some of the legal content from participants at first. After they submitted a draft, we surprised them with additional content to mimic the editing process of lawyers.

In line with the magic spell hypothesis, participants used more centre-embedded structures writing laws than when writing stories or explanations of laws. In contrast with the copy-and-edit hypothesis, participants did not include more centre embedding when they were asked to edit their text than when writing from scratch.

These results suggest that the difficulty to process linguistic structures in legal text, like centre embedding, serve as a cue to the performative, world-altering, nature of the text.

If laws really are like magic spells, it’s good news for simplifying legal language. If the difficult linguistic structures in legal language are there to highlight the performative nature of the text, we should be able to choose a new linguistic feature as a marker.

And maybe this time it will be one that works alongside plain English to help people understand legal obligations.

  • Linguistics
  • reading comprehension
  • New research, Australia New Zealand

what is hypothesis and example

Director of STEM

what is hypothesis and example

Community member - Training Delivery and Development Committee (Volunteer part-time)

what is hypothesis and example

Chief Executive Officer

what is hypothesis and example

Finance Business Partner

what is hypothesis and example

Head of Evidence to Action

IMAGES

  1. Research Hypothesis: Definition, Types, Examples and Quick Tips

    what is hypothesis and example

  2. What is an Hypothesis

    what is hypothesis and example

  3. How to Write a Hypothesis: The Ultimate Guide with Examples

    what is hypothesis and example

  4. Hypothesis

    what is hypothesis and example

  5. Hypothesis

    what is hypothesis and example

  6. Hypothesis Meaning In Research Methodology

    what is hypothesis and example

VIDEO

  1. What is Hypothesis? Example of Hypothesis [#shorts] [#statistics

  2. NEGATIVE RESEARCH HYPOTHESIS STATEMENTS l 3 EXAMPLES l RESEARCH PAPER WRITING GUIDE l THESIS TIPS

  3. Difference Between Null Hypothesis and Alternative Hypothesis

  4. How To Formulate The Hypothesis/What is Hypothesis?

  5. mod05lec28

  6. Steps to Write a Directional Hypothesis #mimtechnovate #hypothesis #researchmethodology

COMMENTS

  1. Hypothesis: Definition, Examples, and Types

    A hypothesis is a tentative statement about the relationship between two or more variables. It is a specific, testable prediction about what you expect to happen in a study. It is a preliminary answer to your question that helps guide the research process. Consider a study designed to examine the relationship between sleep deprivation and test ...

  2. What is a Hypothesis

    Definition: Hypothesis is an educated guess or proposed explanation for a phenomenon, based on some initial observations or data. It is a tentative statement that can be tested and potentially proven or disproven through further investigation and experimentation. Hypothesis is often used in scientific research to guide the design of experiments ...

  3. What is Hypothesis

    Hypothesis is a hypothesis isfundamental concept in the world of research and statistics. It is a testable statement that explains what is happening or observed. It proposes the relation between the various participating variables. Hypothesis is also called Theory, Thesis, Guess, Assumption, or Suggestion. Hypothesis creates a structure that ...

  4. What Is a Hypothesis? (With Types, Examples and FAQS)

    Examples of hypotheses The following are some examples of hypotheses along with their classifications: If an office provides snacks, employees will take fewer off-site breaks: This is a simple hypothesis, as the independent variable is providing snacks at the office and the dependent variable is whether fewer employees choose to take an off-site break.

  5. 15 Hypothesis Examples (2024)

    15 Hypothesis Examples. A hypothesis is defined as a testable prediction, and is used primarily in scientific experiments as a potential or predicted outcome that scientists attempt to prove or disprove (Atkinson et al., 2021; Tan, 2022). In my types of hypothesis article, I outlined 13 different hypotheses, including the directional hypothesis ...

  6. 13 Different Types of Hypothesis (2024)

    In the above example, we have multiple independent and dependent variables: Independent variables: Age and weight. Dependent variables: diabetes and heart disease. Because there are multiple variables, this study is a lot more complex than a simple hypothesis.It quickly gets much more difficult to prove these hypotheses.

  7. Difference Between Making a Hypothesis and Prediction

    The difference between hypothesis and prediction is explained through explanations & examples. Use our simple table for hypothesis vs prediction reference.

  8. How to write a hypothesis

    A hypothesis is a single sentence answer to the Key Inquiry Question that clearly states what your entire essay is going to argue. It contains both the argument and the main reasons in support of your argument. Each hypothesis should clearly state the 'answer' to the question, followed by a 'why'. For Example:

  9. Research Questions vs Hypothesis: What's The Difference?

    A hypothesis is a statement you can approve or disapprove. You develop a hypothesis from a research question by changing the question into a statement. Primarily applied in deductive research, it involves the use of scientific, mathematical, and sociological findings to agree to or write off an assumption. Researchers use the null approach for ...

  10. Hypothesis Lesson for Kids: Definition & Examples

    Problem 1. a) There is a positive relationship between the length of a pendulum and the period of the pendulum. This is a prediction that can be tested by various experiments. Problem 2. c) Diets ...

  11. The Three Most Common Types of Hypotheses

    We might know that X leads to Y, but a mediation hypothesis proposes a mediating, or intervening variable. That is, X leads to M, which in turn leads to Y. In the diagram below I use a different way of visually representing things consistent with how people typically report things when using path analysis. I use mediation a lot in my own research.

  12. What Is Hypothesis? Definition, Meaning, Characteristics, Sources

    Hypothesis is a prediction of the outcome of a study. Hypotheses are drawn from theories and research questions or from direct observations. In fact, a research problem can be formulated as a hypothesis. To test the hypothesis we need to formulate it in terms that can actually be analysed with statistical tools.

  13. Crafting Effective Hypothesis Statements: Examples & Best

    Hypothesis Statements - Overview and Template This document contains definitions, examples, and a template to complete for your assignment. Hypothesis Statements Overview A hypothesis is a prediction about the relationship between two variables. Hypotheses statements often start as an educated guess about how one variable affects a second variable. A hypothesis statement must be testable (i.e ...

  14. Hypothesis in Machine Learning

    A hypothesis is a function that best describes the target in supervised machine learning. The hypothesis that an algorithm would come up depends upon the data and also depends upon the restrictions and bias that we have imposed on the data. The Hypothesis can be calculated as: y = mx + b y =mx+b. Where, y = range. m = slope of the lines.

  15. Null Hypothesis

    Null hypothesis, often denoted as H0, is a foundational concept in statistical hypothesis testing. It represents an assumption that no significant difference, effect, or relationship exists between variables within a population. Learn more about Null Hypothesis, its formula, symbol and example in this article

  16. What Is A Hypothesis

    Hypothesis Definition. In the context of a consulting interview, a hypothesis definition is "a testable statement that needs further data for verification". In other words, the meaning of a hypothesis is that it's an educated guess that you think could be the answer to your client's problem. A hypothesis is therefore not always true.

  17. Difference between Hypothesis and Assumption

    A hypothesis is an uncertain or supposition explanation regarding a phenomenon or event. It is believed to be true by the researcher. An assumption is also a kind of belief which is considered to be true. hypothesis must always go through the process of verification and investigation. On the other hand, an assumption may or may not be verified or investigated.

  18. Hypothesis in Machine Learning

    The hypothesis is defined as the supposition or proposed explanation based on insufficient evidence or assumptions. It is just a guess based on some known facts but has not yet been proven. A good hypothesis is testable, which results in either true or false. Example: Let's understand the hypothesis with a common example. Some scientist claims ...

  19. Understanding Hypothesis Testing

    Hypothesis testing is a statistical method that is used to make a statistical decision using experimental data. Hypothesis testing is basically an assumption that we make about a population parameter. It evaluates two mutually exclusive statements about a population to determine which statement is best supported by the sample data.

  20. Thesis vs Hypothesis vs Theory: the Differences and examples

    A hypothesis is a proposed explanation of something or a phenomenon. A scientific hypothesis uses a scientific method that requires any hypothesis to be tested. As such, scientists and researchers base their hypothesis on observations that have been previously made and that which cannot be explained by the available or prevailing scientific ...

  21. What is a hypothesis and how is it used?

    What is research hypothesis example? For example, a study designed to look at the relationship between sleep deprivation and test performance might have a hypothesis that states, "This study is designed to assess the hypothesis that sleep-deprived people will perform worse on a test than individuals who are not sleep-deprived." ...

  22. Solved Give an example of a hypothesis that cannot be tested

    Question: Give an example of a hypothesis that cannot be tested experimentally.The structure of any part of the broccoli is similar to the whole structure of the broccoli.Ghosts are the souls of people who have died.The average speed of air molecules increases with temperature.A vegetarian is less likely to be affected by night blindness.

  23. Alternative Hypothesis: Definition, Types and Examples

    Example of Hypothesis: Mean age of all college students is 20.4 years. (simple hypothesis). Alternative Hypothesis. An Alternative Hypothesis is a claim or a complement to the null hypothesis. If the null hypothesis predicts a statement to be true, the Alternative Hypothesis predicts it to be false. Let's say the null hypothesis states there ...

  24. Is legal jargon actually a 'magic spell'? Science says maybe

    For example, in the sentence ... The first is the "copy and edit" hypothesis: because legal contracts often address similar circumstances to other contracts, lawyers may copy templates and ...