Christopher Dwyer Ph.D.

3 Core Critical Thinking Skills Every Thinker Should Have

Critically thinking about critical thinking skills..

Posted March 13, 2020 | Reviewed by Ekua Hagan

  • Why Education Is Important
  • Take our ADHD Test
  • Find a Child Therapist

I recently received an email from an educator friend, asking me to briefly describe the skills necessary for critical thinking. They were happy to fill in the blanks themselves from outside reading but wanted to know what specific skills they should focus on teaching their students. I took this as a good opportunity to dedicate a post here to such discussion, in order to provide my friend and any other interested parties with an overview.

To understand critical thinking skills and how they factor into critical thinking, one first needs a definition of the latter. Critical thinking (CT) is a metacognitive process, consisting of a number of skills and dispositions, that when used through self-regulatory reflective judgment, increases the chances of producing a logical conclusion to an argument or solution to a problem (Dwyer, 2017; Dwyer, Hogan & Stewart, 2014). On the surface, this definition clarifies two issues. First, critical thinking is metacognitive—simply, it requires the individual to think about thinking; second, its main components are reflective judgment, dispositions, and skills.

Below the surface, this description requires clarification; hence the impetus for this entry—what is meant by reflective judgment, disposition towards CT, and CT skills? Reflective judgment (i.e. an individuals' understanding of the nature, limits, and certainty of knowing and how this can affect their judgments [King & Kitchener, 1994]) and disposition towards CT (i.e. an inclination, tendency or willingness to perform a given thinking skill [Dwyer, 2017; Facione, Facione & Giancarlo, 1997; Ku, 2009; Norris, 1992; Siegel, 1999; Valenzuela, Nieto & Saiz, 2011]) have both already been covered in my posts; so, consistent with the aim of this piece, let’s discuss CT skills.

CT skills allow individuals to transcend lower-order, memorization-based learning strategies to gain a more complex understanding of the information or problems they encounter (Halpern, 2014). Though debate is ongoing over the definition of CT, one list stands out as a reasonable consensus conceptualization of CT skills. In 1988, a committee of 46 experts in the field of CT gathered to discuss CT conceptualisations, resulting in the Delphi Report; within which was overwhelmingly agreement (i.e. 95% consensus) that analysis , evaluation and inference were the core skills necessary for CT (Facione, 1990). Indeed, over 30 years later, these three CT skills remain the most commonly cited.

1. Analysis

Analysis is a core CT skill used to identify and examine the structure of an argument, the propositions within an argument and the role they play (e.g. the main conclusion, the premises and reasons provided to support the conclusion, objections to the conclusion and inferential relationships among propositions), as well as the sources of the propositions (e.g. personal experience, common belief, and research).

When it comes to analysing the basis for a standpoint, the structure of the argument can be extracted for subsequent evaluation (e.g. from dialogue and text). This can be accomplished through looking for propositions that either support or refute the central claim or other reasons and objections. Through analysis, the argument’s hierarchical structure begins to appear. Notably, argument mapping can aid the visual representation of this hierarchical structure and is supported by research as having positive effects on critical thinking (Butchart et al., 2009; Dwyer, 2011; Dwyer, Hogan & Stewart, 2012; van Gelder, Bisset & Cumming, 2004).

2. Evaluation

Evaluation is a core CT skill that is used in the assessment of propositions and claims (identified through the previous analysis ) with respect to their credibility; relevance; balance, bias (and potential omissions); as well as the logical strength amongst propositions (i.e. the strength of the inferential relationships). Such assessment allows for informed judgment regarding the overall strength or weakness of an argument (Dwyer, 2017; Facione, 1990). If an argument (or its propositions) is not credible, relevant, logical, and unbiased, you should consider excluding it or discussing its weaknesses as an objection.

Evaluating the credibility of claims and arguments involves progressing beyond merely identifying the source of propositions in an argument, to actually examining the "trustworthiness" of those identified sources (e.g. personal experiences, common beliefs/opinions, expert/authority opinion and scientific evidence). This is particularly important because some sources are more credible than others. Evaluation also implies deep consideration of the relevance of claims within an argument, which is accomplished by assessing the contextual relevance of claims and premises—that is, the pertinence or applicability of one proposition to another.

With respect to balance, bias (and potential omissions), it's important to consider the "slant" of an argument—if it seems imbalanced in favour of one line of thinking, then it’s quite possible that the argument has omitted key, opposing points that should also be considered. Imbalance may also imply some level of bias in the argument—another factor that should also be assessed.

what critical thinking skill is based on logic and reason

However, just because an argument is balanced does not mean that it isn’t biased. It may very well be the case that the "opposing views" presented have been "cherry-picked" because they are easily disputed (akin to building a strawman ); thus, making supporting reasons appear stronger than they may actually be—and this is just one example of how a balanced argument may, in fact, be biased. The take-home message regarding balance, bias, and potential omissions should be that, in any argument, you should construct an understanding of the author or speaker’s motivations and consider how these might influence the structure and contents of the argument.

Finally, evaluating the logical strength of an argument is accomplished through monitoring both the logical relationships amongst propositions and the claims they infer. Assessment of logical strength can actually be aided through subsequent inference, as a means of double-checking the logical strength. For example, this can be checked by asking whether or not a particular proposition can actually be inferred based on the propositions that precede it. A useful means of developing this sub-skill is through practicing syllogistic reasoning .

3. Inference

Similar to other educational concepts like synthesis (e.g., see Bloom et al., 1956; Dwyer, 2011; 2017), the final core CT skill, inference , involves the “gathering” of credible, relevant and logical evidence based on the previous analysis and evaluation, for the purpose of drawing a reasonable conclusion (Dwyer, 2017; Facione, 1990). Drawing a conclusion always implies some act of synthesis (i.e. the ability to put parts of information together to form a new whole; see Dwyer, 2011). However, inference is a unique form of synthesis in that it involves the formulation of a set of conclusions derived from a series of arguments or a body of evidence. This inference may imply accepting a conclusion pointed to by an author in light of the evidence they present, or "conjecturing an alternative," equally logical, conclusion or argument based on the available evidence (Facione, 1990). The ability to infer a conclusion in this manner can be completed through formal logic strategies, informal logic strategies (or both) in order to derive intermediate conclusions, as well as central claims.

Another important aspect of inference involves the querying of available evidence, for example, by recognising the need for additional information, gathering it and judging the plausibility of utilising such information for the purpose of drawing a conclusion. Notably, in the context of querying evidence and conjecturing alternative conclusions, inference overlaps with evaluation to a certain degree in that both skills are used to judge the relevance and acceptability of a claim or argument. Furthermore, after inferring a conclusion, the resulting argument should be re-evaluated to ensure that it is reasonable to draw the conclusion that was derived.

Overall, the application of critical thinking skills is a process—one must analyse, evaluate and then infer; and this process can be repeated to ensure that a reasonable conclusion has been drawn. In an effort to simplify the description of this process, for the past few years, I’ve used the analogy of picking apples for baking . We begin by picking apples from a tree. Consider the tree as an analogy, in its own right, for an argument, which is often hierarchically structured like a tree-diagram. By picking apples, I mean identifying propositions and the role they play (i.e. analysis). Once we pick an apple, we evaluate it—we make sure it isn’t rotten (i.e. lacks credibility, is biased) and is suitable for baking (i.e. relevant and logically strong). Finally, we infer— we gather the apples in a basket and bring them home and group them together based on some rationale for construction— maybe four for a pie, three for a crumble and another four for a tart. By the end of the process, we have baked some apple-based goods, or developed a conclusion, solution or decision through critical thinking.

Of course, there is more to critical thinking than the application of skills—a critical thinker must also have the disposition to think critically and engage reflective judgment. However, without the appropriate skills—analysis, evaluation, and inference, it is not likely that CT will be applied. For example, though one might be willing to use CT skills and engage reflective judgment, they may not know how to do so. Conversely, though one might be aware of which CT skills to use in a given context and may have the capacity to perform well when using these skills, they may not be disposed to use them (Valenzuela, Nieto & Saiz, 2011). Though the core CT skills of analysis, evaluation, and inference are not the only important aspects of CT, they are essential for its application.

Bloom, B.S. (1956). Taxonomy of educational objectives: The classification of educational goals. Handbook 1: Cognitive domain. New York: McKay.

Butchart, S., Bigelow, J., Oppy, G., Korb, K., & Gold, I. (2009). Improving critical thinking using web-based argument mapping exercises with automated feedback. Australasian Journal of Educational Technology, 25, 2, 268-291.

Dwyer, C.P. (2011). The evaluation of argument mapping as a learning tool. Doctoral Thesis. National University of Ireland, Galway.

Dwyer, C.P. (2017). Critical thinking: Conceptual perspectives and practical guidelines.Cambridge, UK: Cambridge University Press.

Dwyer, C.P., Hogan, M.J., & Stewart, I. (2012). An evaluation of argument mapping as a method of enhancing critical thinking performance in e-learning environments. Metacognition and Learning, 7, 219-244.

Dwyer, C. P., Hogan, M. J., & Stewart, I. (2014). An integrated critical thinking framework for the 21st century. Thinking Skills & Creativity, 12, 43–52.

Facione, P.A. (1990). The Delphi report: Committee on pre-college philosophy. Millbrae, CA: California Academic Press.

Facione, P.A., Facione, N.C., & Giancarlo, C.A. (1997). Setting expectations for student learning: New directions for higher education. Millbrae: California Academic Press.

Halpern, D.F. (2014). Thought & knowledge: An introduction to critical thinking (5th Ed.). UK: Psychology Press.

King, P. M., & Kitchener, K. S. (1994). Developing reflective judgment: Understanding and promoting intellectual growth and critical thinking in adolescents and adults. San Francisco: Jossey Bass.

Ku, K.Y.L. (2009). Assessing students’ critical thinking performance: Urging for measurements using multi-response format. Thinking Skills and Creativity, 4, 1, 70- 76.

Norris, S. P. (Ed.). (1992). The generalizability of critical thinking: Multiple perspectives on an educational ideal. New York: Teachers College Press.

Siegel, H. (1999). What (good) are thinking dispositions? Educational Theory, 49, 2, 207-221.

Valenzuela, J., Nieto, A.M., & Saiz, C. (2011). Critical thinking motivational scale: A contribution to the study of relationship between critical thinking and motivation. Journal of Research in Educational Psychology, 9, 2, 823-848.

van Gelder, T.J., Bissett, M., & Cumming, G. (2004). Enhancing expertise in informal reasoning. Canadian Journal of Experimental Psychology 58, 142-52.

Christopher Dwyer Ph.D.

Christopher Dwyer, Ph.D., is a lecturer at the Technological University of the Shannon in Athlone, Ireland.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

September 2024 magazine cover

It’s increasingly common for someone to be diagnosed with a condition such as ADHD or autism as an adult. A diagnosis often brings relief, but it can also come with as many questions as answers.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Logo for OPEN OKSTATE

1 Introduction to Critical Thinking

I. what is c ritical t hinking [1].

Critical thinking is the ability to think clearly and rationally about what to do or what to believe.  It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following:

  • Understand the logical connections between ideas.
  • Identify, construct, and evaluate arguments.
  • Detect inconsistencies and common mistakes in reasoning.
  • Solve problems systematically.
  • Identify the relevance and importance of ideas.
  • Reflect on the justification of one’s own beliefs and values.

Critical thinking is not simply a matter of accumulating information. A person with a good memory and who knows a lot of facts is not necessarily good at critical thinking. Critical thinkers are able to deduce consequences from what they know, make use of information to solve problems, and to seek relevant sources of information to inform themselves.

Critical thinking should not be confused with being argumentative or being critical of other people. Although critical thinking skills can be used in exposing fallacies and bad reasoning, critical thinking can also play an important role in cooperative reasoning and constructive tasks. Critical thinking can help us acquire knowledge, improve our theories, and strengthen arguments. We can also use critical thinking to enhance work processes and improve social institutions.

Some people believe that critical thinking hinders creativity because critical thinking requires following the rules of logic and rationality, whereas creativity might require breaking those rules. This is a misconception. Critical thinking is quite compatible with thinking “out-of-the-box,” challenging consensus views, and pursuing less popular approaches. If anything, critical thinking is an essential part of creativity because we need critical thinking to evaluate and improve our creative ideas.

II. The I mportance of C ritical T hinking

Critical thinking is a domain-general thinking skill. The ability to think clearly and rationally is important whatever we choose to do. If you work in education, research, finance, management or the legal profession, then critical thinking is obviously important. But critical thinking skills are not restricted to a particular subject area. Being able to think well and solve problems systematically is an asset for any career.

Critical thinking is very important in the new knowledge economy.  The global knowledge economy is driven by information and technology. One has to be able to deal with changes quickly and effectively. The new economy places increasing demands on flexible intellectual skills, and the ability to analyze information and integrate diverse sources of knowledge in solving problems. Good critical thinking promotes such thinking skills, and is very important in the fast-changing workplace.

Critical thinking enhances language and presentation skills. Thinking clearly and systematically can improve the way we express our ideas. In learning how to analyze the logical structure of texts, critical thinking also improves comprehension abilities.

Critical thinking promotes creativity. To come up with a creative solution to a problem involves not just having new ideas. It must also be the case that the new ideas being generated are useful and relevant to the task at hand. Critical thinking plays a crucial role in evaluating new ideas, selecting the best ones and modifying them if necessary.

Critical thinking is crucial for self-reflection. In order to live a meaningful life and to structure our lives accordingly, we need to justify and reflect on our values and decisions. Critical thinking provides the tools for this process of self-evaluation.

Good critical thinking is the foundation of science and democracy. Science requires the critical use of reason in experimentation and theory confirmation. The proper functioning of a liberal democracy requires citizens who can think critically about social issues to inform their judgments about proper governance and to overcome biases and prejudice.

Critical thinking is a   metacognitive skill . What this means is that it is a higher-level cognitive skill that involves thinking about thinking. We have to be aware of the good principles of reasoning, and be reflective about our own reasoning. In addition, we often need to make a conscious effort to improve ourselves, avoid biases, and maintain objectivity. This is notoriously hard to do. We are all able to think but to think well often requires a long period of training. The mastery of critical thinking is similar to the mastery of many other skills. There are three important components: theory, practice, and attitude.

III. Improv ing O ur T hinking S kills

If we want to think correctly, we need to follow the correct rules of reasoning. Knowledge of theory includes knowledge of these rules. These are the basic principles of critical thinking, such as the laws of logic, and the methods of scientific reasoning, etc.

Also, it would be useful to know something about what not to do if we want to reason correctly. This means we should have some basic knowledge of the mistakes that people make. First, this requires some knowledge of typical fallacies. Second, psychologists have discovered persistent biases and limitations in human reasoning. An awareness of these empirical findings will alert us to potential problems.

However, merely knowing the principles that distinguish good and bad reasoning is not enough. We might study in the classroom about how to swim, and learn about the basic theory, such as the fact that one should not breathe underwater. But unless we can apply such theoretical knowledge through constant practice, we might not actually be able to swim.

Similarly, to be good at critical thinking skills it is necessary to internalize the theoretical principles so that we can actually apply them in daily life. There are at least two ways to do this. One is to perform lots of quality exercises. These exercises don’t just include practicing in the classroom or receiving tutorials; they also include engaging in discussions and debates with other people in our daily lives, where the principles of critical thinking can be applied. The second method is to think more deeply about the principles that we have acquired. In the human mind, memory and understanding are acquired through making connections between ideas.

Good critical thinking skills require more than just knowledge and practice. Persistent practice can bring about improvements only if one has the right kind of motivation and attitude. The following attitudes are not uncommon, but they are obstacles to critical thinking:

  • I prefer being given the correct answers rather than figuring them out myself.
  • I don’t like to think a lot about my decisions as I rely only on gut feelings.
  • I don’t usually review the mistakes I have made.
  • I don’t like to be criticized.

To improve our thinking we have to recognize the importance of reflecting on the reasons for belief and action. We should also be willing to engage in debate, break old habits, and deal with linguistic complexities and abstract concepts.

The  California Critical Thinking Disposition Inventory  is a psychological test that is used to measure whether people are disposed to think critically. It measures the seven different thinking habits listed below, and it is useful to ask ourselves to what extent they describe the way we think:

  • Truth-Seeking—Do you try to understand how things really are? Are you interested in finding out the truth?
  • Open-Mindedness—How receptive are you to new ideas, even when you do not intuitively agree with them? Do you give new concepts a fair hearing?
  • Analyticity—Do you try to understand the reasons behind things? Do you act impulsively or do you evaluate the pros and cons of your decisions?
  • Systematicity—Are you systematic in your thinking? Do you break down a complex problem into parts?
  • Confidence in Reasoning—Do you always defer to other people? How confident are you in your own judgment? Do you have reasons for your confidence? Do you have a way to evaluate your own thinking?
  • Inquisitiveness—Are you curious about unfamiliar topics and resolving complicated problems? Will you chase down an answer until you find it?
  • Maturity of Judgment—Do you jump to conclusions? Do you try to see things from different perspectives? Do you take other people’s experiences into account?

Finally, as mentioned earlier, psychologists have discovered over the years that human reasoning can be easily affected by a variety of cognitive biases. For example, people tend to be over-confident of their abilities and focus too much on evidence that supports their pre-existing opinions. We should be alert to these biases in our attitudes towards our own thinking.

IV. Defining Critical Thinking

There are many different definitions of critical thinking. Here we list some of the well-known ones. You might notice that they all emphasize the importance of clarity and rationality. Here we will look at some well-known definitions in chronological order.

1) Many people trace the importance of critical thinking in education to the early twentieth-century American philosopher John Dewey. But Dewey did not make very extensive use of the term “critical thinking.” Instead, in his book  How We Think (1910), he argued for the importance of what he called “reflective thinking”:

…[when] the ground or basis for a belief is deliberately sought and its adequacy to support the belief examined. This process is called reflective thought; it alone is truly educative in value…

Active, persistent and careful consideration of any belief or supposed form of knowledge in light of the grounds that support it, and the further conclusions to which it tends, constitutes reflective thought.

There is however one passage from How We Think where Dewey explicitly uses the term “critical thinking”:

The essence of critical thinking is suspended judgment; and the essence of this suspense is inquiry to determine the nature of the problem before proceeding to attempts at its solution. This, more than any other thing, transforms mere inference into tested inference, suggested conclusions into proof.

2) The  Watson-Glaser Critical Thinking Appraisal  (1980) is a well-known psychological test of critical thinking ability. The authors of this test define critical thinking as:

…a composite of attitudes, knowledge and skills. This composite includes: (1) attitudes of inquiry that involve an ability to recognize the existence of problems and an acceptance of the general need for evidence in support of what is asserted to be true; (2) knowledge of the nature of valid inferences, abstractions, and generalizations in which the weight or accuracy of different kinds of evidence are logically determined; and (3) skills in employing and applying the above attitudes and knowledge.

3) A very well-known and influential definition of critical thinking comes from philosopher and professor Robert Ennis in his work “A Taxonomy of Critical Thinking Dispositions and Abilities” (1987):

Critical thinking is reasonable reflective thinking that is focused on deciding what to believe or do.

4) The following definition comes from a statement written in 1987 by the philosophers Michael Scriven and Richard Paul for the  National Council for Excellence in Critical Thinking (link), an organization promoting critical thinking in the US:

Critical thinking is the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication, as a guide to belief and action. In its exemplary form, it is based on universal intellectual values that transcend subject matter divisions: clarity, accuracy, precision, consistency, relevance, sound evidence, good reasons, depth, breadth, and fairness. It entails the examination of those structures or elements of thought implicit in all reasoning: purpose, problem, or question-at-issue, assumptions, concepts, empirical grounding; reasoning leading to conclusions, implications and consequences, objections from alternative viewpoints, and frame of reference.

The following excerpt from Peter A. Facione’s “Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction” (1990) is quoted from a report written for the American Philosophical Association:

We understand critical thinking to be purposeful, self-regulatory judgment which results in interpretation, analysis, evaluation, and inference, as well as explanation of the evidential, conceptual, methodological, criteriological, or contextual considerations upon which that judgment is based. CT is essential as a tool of inquiry. As such, CT is a liberating force in education and a powerful resource in one’s personal and civic life. While not synonymous with good thinking, CT is a pervasive and self-rectifying human phenomenon. The ideal critical thinker is habitually inquisitive, well-informed, trustful of reason, open-minded, flexible, fairminded in evaluation, honest in facing personal biases, prudent in making judgments, willing to reconsider, clear about issues, orderly in complex matters, diligent in seeking relevant information, reasonable in the selection of criteria, focused in inquiry, and persistent in seeking results which are as precise as the subject and the circumstances of inquiry permit. Thus, educating good critical thinkers means working toward this ideal. It combines developing CT skills with nurturing those dispositions which consistently yield useful insights and which are the basis of a rational and democratic society.

V. Two F eatures of C ritical T hinking

A. how not what .

Critical thinking is concerned not with what you believe, but rather how or why you believe it. Most classes, such as those on biology or chemistry, teach you what to believe about a subject matter. In contrast, critical thinking is not particularly interested in what the world is, in fact, like. Rather, critical thinking will teach you how to form beliefs and how to think. It is interested in the type of reasoning you use when you form your beliefs, and concerns itself with whether you have good reasons to believe what you believe. Therefore, this class isn’t a class on the psychology of reasoning, which brings us to the second important feature of critical thinking.

B. Ought N ot Is ( or Normative N ot Descriptive )

There is a difference between normative and descriptive theories. Descriptive theories, such as those provided by physics, provide a picture of how the world factually behaves and operates. In contrast, normative theories, such as those provided by ethics or political philosophy, provide a picture of how the world should be. Rather than ask question such as why something is the way it is, normative theories ask how something should be. In this course, we will be interested in normative theories that govern our thinking and reasoning. Therefore, we will not be interested in how we actually reason, but rather focus on how we ought to reason.

In the introduction to this course we considered a selection task with cards that must be flipped in order to check the validity of a rule. We noted that many people fail to identify all the cards required to check the rule. This is how people do in fact reason (descriptive). We then noted that you must flip over two cards. This is how people ought to reason (normative).

  • Section I-IV are taken from http://philosophy.hku.hk/think/ and are in use under the creative commons license. Some modifications have been made to the original content. ↵

Critical Thinking Copyright © 2019 by Brian Kim is licensed under a Creative Commons Attribution 4.0 International License , except where otherwise noted.

Share This Book

GCFGlobal Logo

  • Get started with computers
  • Learn Microsoft Office
  • Apply for a job
  • Improve my work skills
  • Design nice-looking docs
  • Getting Started
  • Smartphones & Tablets
  • Typing Tutorial
  • Online Learning
  • Basic Internet Skills
  • Online Safety
  • Social Media
  • Zoom Basics
  • Google Docs
  • Google Sheets
  • Career Planning
  • Resume Writing
  • Cover Letters
  • Job Search and Networking
  • Business Communication
  • Entrepreneurship 101
  • Careers without College
  • Job Hunt for Today
  • 3D Printing
  • Freelancing 101
  • Personal Finance
  • Sharing Economy
  • Decision-Making
  • Graphic Design
  • Photography
  • Image Editing
  • Learning WordPress
  • Language Learning
  • Critical Thinking
  • For Educators
  • Translations
  • Staff Picks
  • English expand_more expand_less

Critical Thinking and Decision-Making  - What is Critical Thinking?

Critical thinking and decision-making  -, what is critical thinking, critical thinking and decision-making what is critical thinking.

GCFLearnFree Logo

Critical Thinking and Decision-Making: What is Critical Thinking?

Lesson 1: what is critical thinking, what is critical thinking.

Critical thinking is a term that gets thrown around a lot. You've probably heard it used often throughout the years whether it was in school, at work, or in everyday conversation. But when you stop to think about it, what exactly is critical thinking and how do you do it ?

Watch the video below to learn more about critical thinking.

Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions . It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better.

illustration of the terms logic, reasoning, and creativity

This may sound like a pretty broad definition, and that's because critical thinking is a broad skill that can be applied to so many different situations. You can use it to prepare for a job interview, manage your time better, make decisions about purchasing things, and so much more.

The process

illustration of "thoughts" inside a human brain, with several being connected and "analyzed"

As humans, we are constantly thinking . It's something we can't turn off. But not all of it is critical thinking. No one thinks critically 100% of the time... that would be pretty exhausting! Instead, it's an intentional process , something that we consciously use when we're presented with difficult problems or important decisions.

Improving your critical thinking

illustration of the questions "What do I currently know?" and "How do I know this?"

In order to become a better critical thinker, it's important to ask questions when you're presented with a problem or decision, before jumping to any conclusions. You can start with simple ones like What do I currently know? and How do I know this? These can help to give you a better idea of what you're working with and, in some cases, simplify more complex issues.  

Real-world applications

illustration of a hand holding a smartphone displaying an article that reads, "Study: Cats are better than dogs"

Let's take a look at how we can use critical thinking to evaluate online information . Say a friend of yours posts a news article on social media and you're drawn to its headline. If you were to use your everyday automatic thinking, you might accept it as fact and move on. But if you were thinking critically, you would first analyze the available information and ask some questions :

  • What's the source of this article?
  • Is the headline potentially misleading?
  • What are my friend's general beliefs?
  • Do their beliefs inform why they might have shared this?

illustration of "Super Cat Blog" and "According to survery of cat owners" being highlighted from an article on a smartphone

After analyzing all of this information, you can draw a conclusion about whether or not you think the article is trustworthy.

Critical thinking has a wide range of real-world applications . It can help you to make better decisions, become more hireable, and generally better understand the world around you.

illustration of a lightbulb, a briefcase, and the world

/en/problem-solving-and-decision-making/why-is-it-so-hard-to-make-decisions/content/

SEP home page

  • Table of Contents
  • Random Entry
  • Chronological
  • Editorial Information
  • About the SEP
  • Editorial Board
  • How to Cite the SEP
  • Special Characters
  • Advanced Tools
  • Support the SEP
  • PDFs for SEP Friends
  • Make a Donation
  • SEPIA for Libraries
  • Entry Contents

Bibliography

Academic tools.

  • Friends PDF Preview
  • Author and Citation Info
  • Back to Top

Critical Thinking

Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms for thinking carefully, and the thinking components on which they focus. Its adoption as an educational goal has been recommended on the basis of respect for students’ autonomy and preparing students for success in life and for democratic citizenship. “Critical thinkers” have the dispositions and abilities that lead them to think critically when appropriate. The abilities can be identified directly; the dispositions indirectly, by considering what factors contribute to or impede exercise of the abilities. Standardized tests have been developed to assess the degree to which a person possesses such dispositions and abilities. Educational intervention has been shown experimentally to improve them, particularly when it includes dialogue, anchored instruction, and mentoring. Controversies have arisen over the generalizability of critical thinking across domains, over alleged bias in critical thinking theories and instruction, and over the relationship of critical thinking to other types of thinking.

2.1 Dewey’s Three Main Examples

2.2 dewey’s other examples, 2.3 further examples, 2.4 non-examples, 3. the definition of critical thinking, 4. its value, 5. the process of thinking critically, 6. components of the process, 7. contributory dispositions and abilities, 8.1 initiating dispositions, 8.2 internal dispositions, 9. critical thinking abilities, 10. required knowledge, 11. educational methods, 12.1 the generalizability of critical thinking, 12.2 bias in critical thinking theory and pedagogy, 12.3 relationship of critical thinking to other types of thinking, other internet resources, related entries.

Use of the term ‘critical thinking’ to describe an educational goal goes back to the American philosopher John Dewey (1910), who more commonly called it ‘reflective thinking’. He defined it as

active, persistent and careful consideration of any belief or supposed form of knowledge in the light of the grounds that support it, and the further conclusions to which it tends. (Dewey 1910: 6; 1933: 9)

and identified a habit of such consideration with a scientific attitude of mind. His lengthy quotations of Francis Bacon, John Locke, and John Stuart Mill indicate that he was not the first person to propose development of a scientific attitude of mind as an educational goal.

In the 1930s, many of the schools that participated in the Eight-Year Study of the Progressive Education Association (Aikin 1942) adopted critical thinking as an educational goal, for whose achievement the study’s Evaluation Staff developed tests (Smith, Tyler, & Evaluation Staff 1942). Glaser (1941) showed experimentally that it was possible to improve the critical thinking of high school students. Bloom’s influential taxonomy of cognitive educational objectives (Bloom et al. 1956) incorporated critical thinking abilities. Ennis (1962) proposed 12 aspects of critical thinking as a basis for research on the teaching and evaluation of critical thinking ability.

Since 1980, an annual international conference in California on critical thinking and educational reform has attracted tens of thousands of educators from all levels of education and from many parts of the world. Also since 1980, the state university system in California has required all undergraduate students to take a critical thinking course. Since 1983, the Association for Informal Logic and Critical Thinking has sponsored sessions in conjunction with the divisional meetings of the American Philosophical Association (APA). In 1987, the APA’s Committee on Pre-College Philosophy commissioned a consensus statement on critical thinking for purposes of educational assessment and instruction (Facione 1990a). Researchers have developed standardized tests of critical thinking abilities and dispositions; for details, see the Supplement on Assessment . Educational jurisdictions around the world now include critical thinking in guidelines for curriculum and assessment.

For details on this history, see the Supplement on History .

2. Examples and Non-Examples

Before considering the definition of critical thinking, it will be helpful to have in mind some examples of critical thinking, as well as some examples of kinds of thinking that would apparently not count as critical thinking.

Dewey (1910: 68–71; 1933: 91–94) takes as paradigms of reflective thinking three class papers of students in which they describe their thinking. The examples range from the everyday to the scientific.

Transit : “The other day, when I was down town on 16th Street, a clock caught my eye. I saw that the hands pointed to 12:20. This suggested that I had an engagement at 124th Street, at one o’clock. I reasoned that as it had taken me an hour to come down on a surface car, I should probably be twenty minutes late if I returned the same way. I might save twenty minutes by a subway express. But was there a station near? If not, I might lose more than twenty minutes in looking for one. Then I thought of the elevated, and I saw there was such a line within two blocks. But where was the station? If it were several blocks above or below the street I was on, I should lose time instead of gaining it. My mind went back to the subway express as quicker than the elevated; furthermore, I remembered that it went nearer than the elevated to the part of 124th Street I wished to reach, so that time would be saved at the end of the journey. I concluded in favor of the subway, and reached my destination by one o’clock.” (Dewey 1910: 68–69; 1933: 91–92)

Ferryboat : “Projecting nearly horizontally from the upper deck of the ferryboat on which I daily cross the river is a long white pole, having a gilded ball at its tip. It suggested a flagpole when I first saw it; its color, shape, and gilded ball agreed with this idea, and these reasons seemed to justify me in this belief. But soon difficulties presented themselves. The pole was nearly horizontal, an unusual position for a flagpole; in the next place, there was no pulley, ring, or cord by which to attach a flag; finally, there were elsewhere on the boat two vertical staffs from which flags were occasionally flown. It seemed probable that the pole was not there for flag-flying.

“I then tried to imagine all possible purposes of the pole, and to consider for which of these it was best suited: (a) Possibly it was an ornament. But as all the ferryboats and even the tugboats carried poles, this hypothesis was rejected. (b) Possibly it was the terminal of a wireless telegraph. But the same considerations made this improbable. Besides, the more natural place for such a terminal would be the highest part of the boat, on top of the pilot house. (c) Its purpose might be to point out the direction in which the boat is moving.

“In support of this conclusion, I discovered that the pole was lower than the pilot house, so that the steersman could easily see it. Moreover, the tip was enough higher than the base, so that, from the pilot’s position, it must appear to project far out in front of the boat. Moreover, the pilot being near the front of the boat, he would need some such guide as to its direction. Tugboats would also need poles for such a purpose. This hypothesis was so much more probable than the others that I accepted it. I formed the conclusion that the pole was set up for the purpose of showing the pilot the direction in which the boat pointed, to enable him to steer correctly.” (Dewey 1910: 69–70; 1933: 92–93)

Bubbles : “In washing tumblers in hot soapsuds and placing them mouth downward on a plate, bubbles appeared on the outside of the mouth of the tumblers and then went inside. Why? The presence of bubbles suggests air, which I note must come from inside the tumbler. I see that the soapy water on the plate prevents escape of the air save as it may be caught in bubbles. But why should air leave the tumbler? There was no substance entering to force it out. It must have expanded. It expands by increase of heat, or by decrease of pressure, or both. Could the air have become heated after the tumbler was taken from the hot suds? Clearly not the air that was already entangled in the water. If heated air was the cause, cold air must have entered in transferring the tumblers from the suds to the plate. I test to see if this supposition is true by taking several more tumblers out. Some I shake so as to make sure of entrapping cold air in them. Some I take out holding mouth downward in order to prevent cold air from entering. Bubbles appear on the outside of every one of the former and on none of the latter. I must be right in my inference. Air from the outside must have been expanded by the heat of the tumbler, which explains the appearance of the bubbles on the outside. But why do they then go inside? Cold contracts. The tumbler cooled and also the air inside it. Tension was removed, and hence bubbles appeared inside. To be sure of this, I test by placing a cup of ice on the tumbler while the bubbles are still forming outside. They soon reverse” (Dewey 1910: 70–71; 1933: 93–94).

Dewey (1910, 1933) sprinkles his book with other examples of critical thinking. We will refer to the following.

Weather : A man on a walk notices that it has suddenly become cool, thinks that it is probably going to rain, looks up and sees a dark cloud obscuring the sun, and quickens his steps (1910: 6–10; 1933: 9–13).

Disorder : A man finds his rooms on his return to them in disorder with his belongings thrown about, thinks at first of burglary as an explanation, then thinks of mischievous children as being an alternative explanation, then looks to see whether valuables are missing, and discovers that they are (1910: 82–83; 1933: 166–168).

Typhoid : A physician diagnosing a patient whose conspicuous symptoms suggest typhoid avoids drawing a conclusion until more data are gathered by questioning the patient and by making tests (1910: 85–86; 1933: 170).

Blur : A moving blur catches our eye in the distance, we ask ourselves whether it is a cloud of whirling dust or a tree moving its branches or a man signaling to us, we think of other traits that should be found on each of those possibilities, and we look and see if those traits are found (1910: 102, 108; 1933: 121, 133).

Suction pump : In thinking about the suction pump, the scientist first notes that it will draw water only to a maximum height of 33 feet at sea level and to a lesser maximum height at higher elevations, selects for attention the differing atmospheric pressure at these elevations, sets up experiments in which the air is removed from a vessel containing water (when suction no longer works) and in which the weight of air at various levels is calculated, compares the results of reasoning about the height to which a given weight of air will allow a suction pump to raise water with the observed maximum height at different elevations, and finally assimilates the suction pump to such apparently different phenomena as the siphon and the rising of a balloon (1910: 150–153; 1933: 195–198).

Diamond : A passenger in a car driving in a diamond lane reserved for vehicles with at least one passenger notices that the diamond marks on the pavement are far apart in some places and close together in others. Why? The driver suggests that the reason may be that the diamond marks are not needed where there is a solid double line separating the diamond lane from the adjoining lane, but are needed when there is a dotted single line permitting crossing into the diamond lane. Further observation confirms that the diamonds are close together when a dotted line separates the diamond lane from its neighbour, but otherwise far apart.

Rash : A woman suddenly develops a very itchy red rash on her throat and upper chest. She recently noticed a mark on the back of her right hand, but was not sure whether the mark was a rash or a scrape. She lies down in bed and thinks about what might be causing the rash and what to do about it. About two weeks before, she began taking blood pressure medication that contained a sulfa drug, and the pharmacist had warned her, in view of a previous allergic reaction to a medication containing a sulfa drug, to be on the alert for an allergic reaction; however, she had been taking the medication for two weeks with no such effect. The day before, she began using a new cream on her neck and upper chest; against the new cream as the cause was mark on the back of her hand, which had not been exposed to the cream. She began taking probiotics about a month before. She also recently started new eye drops, but she supposed that manufacturers of eye drops would be careful not to include allergy-causing components in the medication. The rash might be a heat rash, since she recently was sweating profusely from her upper body. Since she is about to go away on a short vacation, where she would not have access to her usual physician, she decides to keep taking the probiotics and using the new eye drops but to discontinue the blood pressure medication and to switch back to the old cream for her neck and upper chest. She forms a plan to consult her regular physician on her return about the blood pressure medication.

Candidate : Although Dewey included no examples of thinking directed at appraising the arguments of others, such thinking has come to be considered a kind of critical thinking. We find an example of such thinking in the performance task on the Collegiate Learning Assessment (CLA+), which its sponsoring organization describes as

a performance-based assessment that provides a measure of an institution’s contribution to the development of critical-thinking and written communication skills of its students. (Council for Aid to Education 2017)

A sample task posted on its website requires the test-taker to write a report for public distribution evaluating a fictional candidate’s policy proposals and their supporting arguments, using supplied background documents, with a recommendation on whether to endorse the candidate.

Immediate acceptance of an idea that suggests itself as a solution to a problem (e.g., a possible explanation of an event or phenomenon, an action that seems likely to produce a desired result) is “uncritical thinking, the minimum of reflection” (Dewey 1910: 13). On-going suspension of judgment in the light of doubt about a possible solution is not critical thinking (Dewey 1910: 108). Critique driven by a dogmatically held political or religious ideology is not critical thinking; thus Paulo Freire (1968 [1970]) is using the term (e.g., at 1970: 71, 81, 100, 146) in a more politically freighted sense that includes not only reflection but also revolutionary action against oppression. Derivation of a conclusion from given data using an algorithm is not critical thinking.

What is critical thinking? There are many definitions. Ennis (2016) lists 14 philosophically oriented scholarly definitions and three dictionary definitions. Following Rawls (1971), who distinguished his conception of justice from a utilitarian conception but regarded them as rival conceptions of the same concept, Ennis maintains that the 17 definitions are different conceptions of the same concept. Rawls articulated the shared concept of justice as

a characteristic set of principles for assigning basic rights and duties and for determining… the proper distribution of the benefits and burdens of social cooperation. (Rawls 1971: 5)

Bailin et al. (1999b) claim that, if one considers what sorts of thinking an educator would take not to be critical thinking and what sorts to be critical thinking, one can conclude that educators typically understand critical thinking to have at least three features.

  • It is done for the purpose of making up one’s mind about what to believe or do.
  • The person engaging in the thinking is trying to fulfill standards of adequacy and accuracy appropriate to the thinking.
  • The thinking fulfills the relevant standards to some threshold level.

One could sum up the core concept that involves these three features by saying that critical thinking is careful goal-directed thinking. This core concept seems to apply to all the examples of critical thinking described in the previous section. As for the non-examples, their exclusion depends on construing careful thinking as excluding jumping immediately to conclusions, suspending judgment no matter how strong the evidence, reasoning from an unquestioned ideological or religious perspective, and routinely using an algorithm to answer a question.

If the core of critical thinking is careful goal-directed thinking, conceptions of it can vary according to its presumed scope, its presumed goal, one’s criteria and threshold for being careful, and the thinking component on which one focuses. As to its scope, some conceptions (e.g., Dewey 1910, 1933) restrict it to constructive thinking on the basis of one’s own observations and experiments, others (e.g., Ennis 1962; Fisher & Scriven 1997; Johnson 1992) to appraisal of the products of such thinking. Ennis (1991) and Bailin et al. (1999b) take it to cover both construction and appraisal. As to its goal, some conceptions restrict it to forming a judgment (Dewey 1910, 1933; Lipman 1987; Facione 1990a). Others allow for actions as well as beliefs as the end point of a process of critical thinking (Ennis 1991; Bailin et al. 1999b). As to the criteria and threshold for being careful, definitions vary in the term used to indicate that critical thinking satisfies certain norms: “intellectually disciplined” (Scriven & Paul 1987), “reasonable” (Ennis 1991), “skillful” (Lipman 1987), “skilled” (Fisher & Scriven 1997), “careful” (Bailin & Battersby 2009). Some definitions specify these norms, referring variously to “consideration of any belief or supposed form of knowledge in the light of the grounds that support it and the further conclusions to which it tends” (Dewey 1910, 1933); “the methods of logical inquiry and reasoning” (Glaser 1941); “conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication” (Scriven & Paul 1987); the requirement that “it is sensitive to context, relies on criteria, and is self-correcting” (Lipman 1987); “evidential, conceptual, methodological, criteriological, or contextual considerations” (Facione 1990a); and “plus-minus considerations of the product in terms of appropriate standards (or criteria)” (Johnson 1992). Stanovich and Stanovich (2010) propose to ground the concept of critical thinking in the concept of rationality, which they understand as combining epistemic rationality (fitting one’s beliefs to the world) and instrumental rationality (optimizing goal fulfillment); a critical thinker, in their view, is someone with “a propensity to override suboptimal responses from the autonomous mind” (2010: 227). These variant specifications of norms for critical thinking are not necessarily incompatible with one another, and in any case presuppose the core notion of thinking carefully. As to the thinking component singled out, some definitions focus on suspension of judgment during the thinking (Dewey 1910; McPeck 1981), others on inquiry while judgment is suspended (Bailin & Battersby 2009, 2021), others on the resulting judgment (Facione 1990a), and still others on responsiveness to reasons (Siegel 1988). Kuhn (2019) takes critical thinking to be more a dialogic practice of advancing and responding to arguments than an individual ability.

In educational contexts, a definition of critical thinking is a “programmatic definition” (Scheffler 1960: 19). It expresses a practical program for achieving an educational goal. For this purpose, a one-sentence formulaic definition is much less useful than articulation of a critical thinking process, with criteria and standards for the kinds of thinking that the process may involve. The real educational goal is recognition, adoption and implementation by students of those criteria and standards. That adoption and implementation in turn consists in acquiring the knowledge, abilities and dispositions of a critical thinker.

Conceptions of critical thinking generally do not include moral integrity as part of the concept. Dewey, for example, took critical thinking to be the ultimate intellectual goal of education, but distinguished it from the development of social cooperation among school children, which he took to be the central moral goal. Ennis (1996, 2011) added to his previous list of critical thinking dispositions a group of dispositions to care about the dignity and worth of every person, which he described as a “correlative” (1996) disposition without which critical thinking would be less valuable and perhaps harmful. An educational program that aimed at developing critical thinking but not the correlative disposition to care about the dignity and worth of every person, he asserted, “would be deficient and perhaps dangerous” (Ennis 1996: 172).

Dewey thought that education for reflective thinking would be of value to both the individual and society; recognition in educational practice of the kinship to the scientific attitude of children’s native curiosity, fertile imagination and love of experimental inquiry “would make for individual happiness and the reduction of social waste” (Dewey 1910: iii). Schools participating in the Eight-Year Study took development of the habit of reflective thinking and skill in solving problems as a means to leading young people to understand, appreciate and live the democratic way of life characteristic of the United States (Aikin 1942: 17–18, 81). Harvey Siegel (1988: 55–61) has offered four considerations in support of adopting critical thinking as an educational ideal. (1) Respect for persons requires that schools and teachers honour students’ demands for reasons and explanations, deal with students honestly, and recognize the need to confront students’ independent judgment; these requirements concern the manner in which teachers treat students. (2) Education has the task of preparing children to be successful adults, a task that requires development of their self-sufficiency. (3) Education should initiate children into the rational traditions in such fields as history, science and mathematics. (4) Education should prepare children to become democratic citizens, which requires reasoned procedures and critical talents and attitudes. To supplement these considerations, Siegel (1988: 62–90) responds to two objections: the ideology objection that adoption of any educational ideal requires a prior ideological commitment and the indoctrination objection that cultivation of critical thinking cannot escape being a form of indoctrination.

Despite the diversity of our 11 examples, one can recognize a common pattern. Dewey analyzed it as consisting of five phases:

  • suggestions , in which the mind leaps forward to a possible solution;
  • an intellectualization of the difficulty or perplexity into a problem to be solved, a question for which the answer must be sought;
  • the use of one suggestion after another as a leading idea, or hypothesis , to initiate and guide observation and other operations in collection of factual material;
  • the mental elaboration of the idea or supposition as an idea or supposition ( reasoning , in the sense on which reasoning is a part, not the whole, of inference); and
  • testing the hypothesis by overt or imaginative action. (Dewey 1933: 106–107; italics in original)

The process of reflective thinking consisting of these phases would be preceded by a perplexed, troubled or confused situation and followed by a cleared-up, unified, resolved situation (Dewey 1933: 106). The term ‘phases’ replaced the term ‘steps’ (Dewey 1910: 72), thus removing the earlier suggestion of an invariant sequence. Variants of the above analysis appeared in (Dewey 1916: 177) and (Dewey 1938: 101–119).

The variant formulations indicate the difficulty of giving a single logical analysis of such a varied process. The process of critical thinking may have a spiral pattern, with the problem being redefined in the light of obstacles to solving it as originally formulated. For example, the person in Transit might have concluded that getting to the appointment at the scheduled time was impossible and have reformulated the problem as that of rescheduling the appointment for a mutually convenient time. Further, defining a problem does not always follow after or lead immediately to an idea of a suggested solution. Nor should it do so, as Dewey himself recognized in describing the physician in Typhoid as avoiding any strong preference for this or that conclusion before getting further information (Dewey 1910: 85; 1933: 170). People with a hypothesis in mind, even one to which they have a very weak commitment, have a so-called “confirmation bias” (Nickerson 1998): they are likely to pay attention to evidence that confirms the hypothesis and to ignore evidence that counts against it or for some competing hypothesis. Detectives, intelligence agencies, and investigators of airplane accidents are well advised to gather relevant evidence systematically and to postpone even tentative adoption of an explanatory hypothesis until the collected evidence rules out with the appropriate degree of certainty all but one explanation. Dewey’s analysis of the critical thinking process can be faulted as well for requiring acceptance or rejection of a possible solution to a defined problem, with no allowance for deciding in the light of the available evidence to suspend judgment. Further, given the great variety of kinds of problems for which reflection is appropriate, there is likely to be variation in its component events. Perhaps the best way to conceptualize the critical thinking process is as a checklist whose component events can occur in a variety of orders, selectively, and more than once. These component events might include (1) noticing a difficulty, (2) defining the problem, (3) dividing the problem into manageable sub-problems, (4) formulating a variety of possible solutions to the problem or sub-problem, (5) determining what evidence is relevant to deciding among possible solutions to the problem or sub-problem, (6) devising a plan of systematic observation or experiment that will uncover the relevant evidence, (7) carrying out the plan of systematic observation or experimentation, (8) noting the results of the systematic observation or experiment, (9) gathering relevant testimony and information from others, (10) judging the credibility of testimony and information gathered from others, (11) drawing conclusions from gathered evidence and accepted testimony, and (12) accepting a solution that the evidence adequately supports (cf. Hitchcock 2017: 485).

Checklist conceptions of the process of critical thinking are open to the objection that they are too mechanical and procedural to fit the multi-dimensional and emotionally charged issues for which critical thinking is urgently needed (Paul 1984). For such issues, a more dialectical process is advocated, in which competing relevant world views are identified, their implications explored, and some sort of creative synthesis attempted.

If one considers the critical thinking process illustrated by the 11 examples, one can identify distinct kinds of mental acts and mental states that form part of it. To distinguish, label and briefly characterize these components is a useful preliminary to identifying abilities, skills, dispositions, attitudes, habits and the like that contribute causally to thinking critically. Identifying such abilities and habits is in turn a useful preliminary to setting educational goals. Setting the goals is in its turn a useful preliminary to designing strategies for helping learners to achieve the goals and to designing ways of measuring the extent to which learners have done so. Such measures provide both feedback to learners on their achievement and a basis for experimental research on the effectiveness of various strategies for educating people to think critically. Let us begin, then, by distinguishing the kinds of mental acts and mental events that can occur in a critical thinking process.

  • Observing : One notices something in one’s immediate environment (sudden cooling of temperature in Weather , bubbles forming outside a glass and then going inside in Bubbles , a moving blur in the distance in Blur , a rash in Rash ). Or one notes the results of an experiment or systematic observation (valuables missing in Disorder , no suction without air pressure in Suction pump )
  • Feeling : One feels puzzled or uncertain about something (how to get to an appointment on time in Transit , why the diamonds vary in spacing in Diamond ). One wants to resolve this perplexity. One feels satisfaction once one has worked out an answer (to take the subway express in Transit , diamonds closer when needed as a warning in Diamond ).
  • Wondering : One formulates a question to be addressed (why bubbles form outside a tumbler taken from hot water in Bubbles , how suction pumps work in Suction pump , what caused the rash in Rash ).
  • Imagining : One thinks of possible answers (bus or subway or elevated in Transit , flagpole or ornament or wireless communication aid or direction indicator in Ferryboat , allergic reaction or heat rash in Rash ).
  • Inferring : One works out what would be the case if a possible answer were assumed (valuables missing if there has been a burglary in Disorder , earlier start to the rash if it is an allergic reaction to a sulfa drug in Rash ). Or one draws a conclusion once sufficient relevant evidence is gathered (take the subway in Transit , burglary in Disorder , discontinue blood pressure medication and new cream in Rash ).
  • Knowledge : One uses stored knowledge of the subject-matter to generate possible answers or to infer what would be expected on the assumption of a particular answer (knowledge of a city’s public transit system in Transit , of the requirements for a flagpole in Ferryboat , of Boyle’s law in Bubbles , of allergic reactions in Rash ).
  • Experimenting : One designs and carries out an experiment or a systematic observation to find out whether the results deduced from a possible answer will occur (looking at the location of the flagpole in relation to the pilot’s position in Ferryboat , putting an ice cube on top of a tumbler taken from hot water in Bubbles , measuring the height to which a suction pump will draw water at different elevations in Suction pump , noticing the spacing of diamonds when movement to or from a diamond lane is allowed in Diamond ).
  • Consulting : One finds a source of information, gets the information from the source, and makes a judgment on whether to accept it. None of our 11 examples include searching for sources of information. In this respect they are unrepresentative, since most people nowadays have almost instant access to information relevant to answering any question, including many of those illustrated by the examples. However, Candidate includes the activities of extracting information from sources and evaluating its credibility.
  • Identifying and analyzing arguments : One notices an argument and works out its structure and content as a preliminary to evaluating its strength. This activity is central to Candidate . It is an important part of a critical thinking process in which one surveys arguments for various positions on an issue.
  • Judging : One makes a judgment on the basis of accumulated evidence and reasoning, such as the judgment in Ferryboat that the purpose of the pole is to provide direction to the pilot.
  • Deciding : One makes a decision on what to do or on what policy to adopt, as in the decision in Transit to take the subway.

By definition, a person who does something voluntarily is both willing and able to do that thing at that time. Both the willingness and the ability contribute causally to the person’s action, in the sense that the voluntary action would not occur if either (or both) of these were lacking. For example, suppose that one is standing with one’s arms at one’s sides and one voluntarily lifts one’s right arm to an extended horizontal position. One would not do so if one were unable to lift one’s arm, if for example one’s right side was paralyzed as the result of a stroke. Nor would one do so if one were unwilling to lift one’s arm, if for example one were participating in a street demonstration at which a white supremacist was urging the crowd to lift their right arm in a Nazi salute and one were unwilling to express support in this way for the racist Nazi ideology. The same analysis applies to a voluntary mental process of thinking critically. It requires both willingness and ability to think critically, including willingness and ability to perform each of the mental acts that compose the process and to coordinate those acts in a sequence that is directed at resolving the initiating perplexity.

Consider willingness first. We can identify causal contributors to willingness to think critically by considering factors that would cause a person who was able to think critically about an issue nevertheless not to do so (Hamby 2014). For each factor, the opposite condition thus contributes causally to willingness to think critically on a particular occasion. For example, people who habitually jump to conclusions without considering alternatives will not think critically about issues that arise, even if they have the required abilities. The contrary condition of willingness to suspend judgment is thus a causal contributor to thinking critically.

Now consider ability. In contrast to the ability to move one’s arm, which can be completely absent because a stroke has left the arm paralyzed, the ability to think critically is a developed ability, whose absence is not a complete absence of ability to think but absence of ability to think well. We can identify the ability to think well directly, in terms of the norms and standards for good thinking. In general, to be able do well the thinking activities that can be components of a critical thinking process, one needs to know the concepts and principles that characterize their good performance, to recognize in particular cases that the concepts and principles apply, and to apply them. The knowledge, recognition and application may be procedural rather than declarative. It may be domain-specific rather than widely applicable, and in either case may need subject-matter knowledge, sometimes of a deep kind.

Reflections of the sort illustrated by the previous two paragraphs have led scholars to identify the knowledge, abilities and dispositions of a “critical thinker”, i.e., someone who thinks critically whenever it is appropriate to do so. We turn now to these three types of causal contributors to thinking critically. We start with dispositions, since arguably these are the most powerful contributors to being a critical thinker, can be fostered at an early stage of a child’s development, and are susceptible to general improvement (Glaser 1941: 175)

8. Critical Thinking Dispositions

Educational researchers use the term ‘dispositions’ broadly for the habits of mind and attitudes that contribute causally to being a critical thinker. Some writers (e.g., Paul & Elder 2006; Hamby 2014; Bailin & Battersby 2016a) propose to use the term ‘virtues’ for this dimension of a critical thinker. The virtues in question, although they are virtues of character, concern the person’s ways of thinking rather than the person’s ways of behaving towards others. They are not moral virtues but intellectual virtues, of the sort articulated by Zagzebski (1996) and discussed by Turri, Alfano, and Greco (2017).

On a realistic conception, thinking dispositions or intellectual virtues are real properties of thinkers. They are general tendencies, propensities, or inclinations to think in particular ways in particular circumstances, and can be genuinely explanatory (Siegel 1999). Sceptics argue that there is no evidence for a specific mental basis for the habits of mind that contribute to thinking critically, and that it is pedagogically misleading to posit such a basis (Bailin et al. 1999a). Whatever their status, critical thinking dispositions need motivation for their initial formation in a child—motivation that may be external or internal. As children develop, the force of habit will gradually become important in sustaining the disposition (Nieto & Valenzuela 2012). Mere force of habit, however, is unlikely to sustain critical thinking dispositions. Critical thinkers must value and enjoy using their knowledge and abilities to think things through for themselves. They must be committed to, and lovers of, inquiry.

A person may have a critical thinking disposition with respect to only some kinds of issues. For example, one could be open-minded about scientific issues but not about religious issues. Similarly, one could be confident in one’s ability to reason about the theological implications of the existence of evil in the world but not in one’s ability to reason about the best design for a guided ballistic missile.

Facione (1990a: 25) divides “affective dispositions” of critical thinking into approaches to life and living in general and approaches to specific issues, questions or problems. Adapting this distinction, one can usefully divide critical thinking dispositions into initiating dispositions (those that contribute causally to starting to think critically about an issue) and internal dispositions (those that contribute causally to doing a good job of thinking critically once one has started). The two categories are not mutually exclusive. For example, open-mindedness, in the sense of willingness to consider alternative points of view to one’s own, is both an initiating and an internal disposition.

Using the strategy of considering factors that would block people with the ability to think critically from doing so, we can identify as initiating dispositions for thinking critically attentiveness, a habit of inquiry, self-confidence, courage, open-mindedness, willingness to suspend judgment, trust in reason, wanting evidence for one’s beliefs, and seeking the truth. We consider briefly what each of these dispositions amounts to, in each case citing sources that acknowledge them.

  • Attentiveness : One will not think critically if one fails to recognize an issue that needs to be thought through. For example, the pedestrian in Weather would not have looked up if he had not noticed that the air was suddenly cooler. To be a critical thinker, then, one needs to be habitually attentive to one’s surroundings, noticing not only what one senses but also sources of perplexity in messages received and in one’s own beliefs and attitudes (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Habit of inquiry : Inquiry is effortful, and one needs an internal push to engage in it. For example, the student in Bubbles could easily have stopped at idle wondering about the cause of the bubbles rather than reasoning to a hypothesis, then designing and executing an experiment to test it. Thus willingness to think critically needs mental energy and initiative. What can supply that energy? Love of inquiry, or perhaps just a habit of inquiry. Hamby (2015) has argued that willingness to inquire is the central critical thinking virtue, one that encompasses all the others. It is recognized as a critical thinking disposition by Dewey (1910: 29; 1933: 35), Glaser (1941: 5), Ennis (1987: 12; 1991: 8), Facione (1990a: 25), Bailin et al. (1999b: 294), Halpern (1998: 452), and Facione, Facione, & Giancarlo (2001).
  • Self-confidence : Lack of confidence in one’s abilities can block critical thinking. For example, if the woman in Rash lacked confidence in her ability to figure things out for herself, she might just have assumed that the rash on her chest was the allergic reaction to her medication against which the pharmacist had warned her. Thus willingness to think critically requires confidence in one’s ability to inquire (Facione 1990a: 25; Facione, Facione, & Giancarlo 2001).
  • Courage : Fear of thinking for oneself can stop one from doing it. Thus willingness to think critically requires intellectual courage (Paul & Elder 2006: 16).
  • Open-mindedness : A dogmatic attitude will impede thinking critically. For example, a person who adheres rigidly to a “pro-choice” position on the issue of the legal status of induced abortion is likely to be unwilling to consider seriously the issue of when in its development an unborn child acquires a moral right to life. Thus willingness to think critically requires open-mindedness, in the sense of a willingness to examine questions to which one already accepts an answer but which further evidence or reasoning might cause one to answer differently (Dewey 1933; Facione 1990a; Ennis 1991; Bailin et al. 1999b; Halpern 1998, Facione, Facione, & Giancarlo 2001). Paul (1981) emphasizes open-mindedness about alternative world-views, and recommends a dialectical approach to integrating such views as central to what he calls “strong sense” critical thinking. In three studies, Haran, Ritov, & Mellers (2013) found that actively open-minded thinking, including “the tendency to weigh new evidence against a favored belief, to spend sufficient time on a problem before giving up, and to consider carefully the opinions of others in forming one’s own”, led study participants to acquire information and thus to make accurate estimations.
  • Willingness to suspend judgment : Premature closure on an initial solution will block critical thinking. Thus willingness to think critically requires a willingness to suspend judgment while alternatives are explored (Facione 1990a; Ennis 1991; Halpern 1998).
  • Trust in reason : Since distrust in the processes of reasoned inquiry will dissuade one from engaging in it, trust in them is an initiating critical thinking disposition (Facione 1990a, 25; Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001; Paul & Elder 2006). In reaction to an allegedly exclusive emphasis on reason in critical thinking theory and pedagogy, Thayer-Bacon (2000) argues that intuition, imagination, and emotion have important roles to play in an adequate conception of critical thinking that she calls “constructive thinking”. From her point of view, critical thinking requires trust not only in reason but also in intuition, imagination, and emotion.
  • Seeking the truth : If one does not care about the truth but is content to stick with one’s initial bias on an issue, then one will not think critically about it. Seeking the truth is thus an initiating critical thinking disposition (Bailin et al. 1999b: 294; Facione, Facione, & Giancarlo 2001). A disposition to seek the truth is implicit in more specific critical thinking dispositions, such as trying to be well-informed, considering seriously points of view other than one’s own, looking for alternatives, suspending judgment when the evidence is insufficient, and adopting a position when the evidence supporting it is sufficient.

Some of the initiating dispositions, such as open-mindedness and willingness to suspend judgment, are also internal critical thinking dispositions, in the sense of mental habits or attitudes that contribute causally to doing a good job of critical thinking once one starts the process. But there are many other internal critical thinking dispositions. Some of them are parasitic on one’s conception of good thinking. For example, it is constitutive of good thinking about an issue to formulate the issue clearly and to maintain focus on it. For this purpose, one needs not only the corresponding ability but also the corresponding disposition. Ennis (1991: 8) describes it as the disposition “to determine and maintain focus on the conclusion or question”, Facione (1990a: 25) as “clarity in stating the question or concern”. Other internal dispositions are motivators to continue or adjust the critical thinking process, such as willingness to persist in a complex task and willingness to abandon nonproductive strategies in an attempt to self-correct (Halpern 1998: 452). For a list of identified internal critical thinking dispositions, see the Supplement on Internal Critical Thinking Dispositions .

Some theorists postulate skills, i.e., acquired abilities, as operative in critical thinking. It is not obvious, however, that a good mental act is the exercise of a generic acquired skill. Inferring an expected time of arrival, as in Transit , has some generic components but also uses non-generic subject-matter knowledge. Bailin et al. (1999a) argue against viewing critical thinking skills as generic and discrete, on the ground that skilled performance at a critical thinking task cannot be separated from knowledge of concepts and from domain-specific principles of good thinking. Talk of skills, they concede, is unproblematic if it means merely that a person with critical thinking skills is capable of intelligent performance.

Despite such scepticism, theorists of critical thinking have listed as general contributors to critical thinking what they variously call abilities (Glaser 1941; Ennis 1962, 1991), skills (Facione 1990a; Halpern 1998) or competencies (Fisher & Scriven 1997). Amalgamating these lists would produce a confusing and chaotic cornucopia of more than 50 possible educational objectives, with only partial overlap among them. It makes sense instead to try to understand the reasons for the multiplicity and diversity, and to make a selection according to one’s own reasons for singling out abilities to be developed in a critical thinking curriculum. Two reasons for diversity among lists of critical thinking abilities are the underlying conception of critical thinking and the envisaged educational level. Appraisal-only conceptions, for example, involve a different suite of abilities than constructive-only conceptions. Some lists, such as those in (Glaser 1941), are put forward as educational objectives for secondary school students, whereas others are proposed as objectives for college students (e.g., Facione 1990a).

The abilities described in the remaining paragraphs of this section emerge from reflection on the general abilities needed to do well the thinking activities identified in section 6 as components of the critical thinking process described in section 5 . The derivation of each collection of abilities is accompanied by citation of sources that list such abilities and of standardized tests that claim to test them.

Observational abilities : Careful and accurate observation sometimes requires specialist expertise and practice, as in the case of observing birds and observing accident scenes. However, there are general abilities of noticing what one’s senses are picking up from one’s environment and of being able to articulate clearly and accurately to oneself and others what one has observed. It helps in exercising them to be able to recognize and take into account factors that make one’s observation less trustworthy, such as prior framing of the situation, inadequate time, deficient senses, poor observation conditions, and the like. It helps as well to be skilled at taking steps to make one’s observation more trustworthy, such as moving closer to get a better look, measuring something three times and taking the average, and checking what one thinks one is observing with someone else who is in a good position to observe it. It also helps to be skilled at recognizing respects in which one’s report of one’s observation involves inference rather than direct observation, so that one can then consider whether the inference is justified. These abilities come into play as well when one thinks about whether and with what degree of confidence to accept an observation report, for example in the study of history or in a criminal investigation or in assessing news reports. Observational abilities show up in some lists of critical thinking abilities (Ennis 1962: 90; Facione 1990a: 16; Ennis 1991: 9). There are items testing a person’s ability to judge the credibility of observation reports in the Cornell Critical Thinking Tests, Levels X and Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). Norris and King (1983, 1985, 1990a, 1990b) is a test of ability to appraise observation reports.

Emotional abilities : The emotions that drive a critical thinking process are perplexity or puzzlement, a wish to resolve it, and satisfaction at achieving the desired resolution. Children experience these emotions at an early age, without being trained to do so. Education that takes critical thinking as a goal needs only to channel these emotions and to make sure not to stifle them. Collaborative critical thinking benefits from ability to recognize one’s own and others’ emotional commitments and reactions.

Questioning abilities : A critical thinking process needs transformation of an inchoate sense of perplexity into a clear question. Formulating a question well requires not building in questionable assumptions, not prejudging the issue, and using language that in context is unambiguous and precise enough (Ennis 1962: 97; 1991: 9).

Imaginative abilities : Thinking directed at finding the correct causal explanation of a general phenomenon or particular event requires an ability to imagine possible explanations. Thinking about what policy or plan of action to adopt requires generation of options and consideration of possible consequences of each option. Domain knowledge is required for such creative activity, but a general ability to imagine alternatives is helpful and can be nurtured so as to become easier, quicker, more extensive, and deeper (Dewey 1910: 34–39; 1933: 40–47). Facione (1990a) and Halpern (1998) include the ability to imagine alternatives as a critical thinking ability.

Inferential abilities : The ability to draw conclusions from given information, and to recognize with what degree of certainty one’s own or others’ conclusions follow, is universally recognized as a general critical thinking ability. All 11 examples in section 2 of this article include inferences, some from hypotheses or options (as in Transit , Ferryboat and Disorder ), others from something observed (as in Weather and Rash ). None of these inferences is formally valid. Rather, they are licensed by general, sometimes qualified substantive rules of inference (Toulmin 1958) that rest on domain knowledge—that a bus trip takes about the same time in each direction, that the terminal of a wireless telegraph would be located on the highest possible place, that sudden cooling is often followed by rain, that an allergic reaction to a sulfa drug generally shows up soon after one starts taking it. It is a matter of controversy to what extent the specialized ability to deduce conclusions from premisses using formal rules of inference is needed for critical thinking. Dewey (1933) locates logical forms in setting out the products of reflection rather than in the process of reflection. Ennis (1981a), on the other hand, maintains that a liberally-educated person should have the following abilities: to translate natural-language statements into statements using the standard logical operators, to use appropriately the language of necessary and sufficient conditions, to deal with argument forms and arguments containing symbols, to determine whether in virtue of an argument’s form its conclusion follows necessarily from its premisses, to reason with logically complex propositions, and to apply the rules and procedures of deductive logic. Inferential abilities are recognized as critical thinking abilities by Glaser (1941: 6), Facione (1990a: 9), Ennis (1991: 9), Fisher & Scriven (1997: 99, 111), and Halpern (1998: 452). Items testing inferential abilities constitute two of the five subtests of the Watson Glaser Critical Thinking Appraisal (Watson & Glaser 1980a, 1980b, 1994), two of the four sections in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), three of the seven sections in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005), 11 of the 34 items on Forms A and B of the California Critical Thinking Skills Test (Facione 1990b, 1992), and a high but variable proportion of the 25 selected-response questions in the Collegiate Learning Assessment (Council for Aid to Education 2017).

Experimenting abilities : Knowing how to design and execute an experiment is important not just in scientific research but also in everyday life, as in Rash . Dewey devoted a whole chapter of his How We Think (1910: 145–156; 1933: 190–202) to the superiority of experimentation over observation in advancing knowledge. Experimenting abilities come into play at one remove in appraising reports of scientific studies. Skill in designing and executing experiments includes the acknowledged abilities to appraise evidence (Glaser 1941: 6), to carry out experiments and to apply appropriate statistical inference techniques (Facione 1990a: 9), to judge inductions to an explanatory hypothesis (Ennis 1991: 9), and to recognize the need for an adequately large sample size (Halpern 1998). The Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) includes four items (out of 52) on experimental design. The Collegiate Learning Assessment (Council for Aid to Education 2017) makes room for appraisal of study design in both its performance task and its selected-response questions.

Consulting abilities : Skill at consulting sources of information comes into play when one seeks information to help resolve a problem, as in Candidate . Ability to find and appraise information includes ability to gather and marshal pertinent information (Glaser 1941: 6), to judge whether a statement made by an alleged authority is acceptable (Ennis 1962: 84), to plan a search for desired information (Facione 1990a: 9), and to judge the credibility of a source (Ennis 1991: 9). Ability to judge the credibility of statements is tested by 24 items (out of 76) in the Cornell Critical Thinking Test Level X (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005) and by four items (out of 52) in the Cornell Critical Thinking Test Level Z (Ennis & Millman 1971; Ennis, Millman, & Tomko 1985, 2005). The College Learning Assessment’s performance task requires evaluation of whether information in documents is credible or unreliable (Council for Aid to Education 2017).

Argument analysis abilities : The ability to identify and analyze arguments contributes to the process of surveying arguments on an issue in order to form one’s own reasoned judgment, as in Candidate . The ability to detect and analyze arguments is recognized as a critical thinking skill by Facione (1990a: 7–8), Ennis (1991: 9) and Halpern (1998). Five items (out of 34) on the California Critical Thinking Skills Test (Facione 1990b, 1992) test skill at argument analysis. The College Learning Assessment (Council for Aid to Education 2017) incorporates argument analysis in its selected-response tests of critical reading and evaluation and of critiquing an argument.

Judging skills and deciding skills : Skill at judging and deciding is skill at recognizing what judgment or decision the available evidence and argument supports, and with what degree of confidence. It is thus a component of the inferential skills already discussed.

Lists and tests of critical thinking abilities often include two more abilities: identifying assumptions and constructing and evaluating definitions.

In addition to dispositions and abilities, critical thinking needs knowledge: of critical thinking concepts, of critical thinking principles, and of the subject-matter of the thinking.

We can derive a short list of concepts whose understanding contributes to critical thinking from the critical thinking abilities described in the preceding section. Observational abilities require an understanding of the difference between observation and inference. Questioning abilities require an understanding of the concepts of ambiguity and vagueness. Inferential abilities require an understanding of the difference between conclusive and defeasible inference (traditionally, between deduction and induction), as well as of the difference between necessary and sufficient conditions. Experimenting abilities require an understanding of the concepts of hypothesis, null hypothesis, assumption and prediction, as well as of the concept of statistical significance and of its difference from importance. They also require an understanding of the difference between an experiment and an observational study, and in particular of the difference between a randomized controlled trial, a prospective correlational study and a retrospective (case-control) study. Argument analysis abilities require an understanding of the concepts of argument, premiss, assumption, conclusion and counter-consideration. Additional critical thinking concepts are proposed by Bailin et al. (1999b: 293), Fisher & Scriven (1997: 105–106), Black (2012), and Blair (2021).

According to Glaser (1941: 25), ability to think critically requires knowledge of the methods of logical inquiry and reasoning. If we review the list of abilities in the preceding section, however, we can see that some of them can be acquired and exercised merely through practice, possibly guided in an educational setting, followed by feedback. Searching intelligently for a causal explanation of some phenomenon or event requires that one consider a full range of possible causal contributors, but it seems more important that one implements this principle in one’s practice than that one is able to articulate it. What is important is “operational knowledge” of the standards and principles of good thinking (Bailin et al. 1999b: 291–293). But the development of such critical thinking abilities as designing an experiment or constructing an operational definition can benefit from learning their underlying theory. Further, explicit knowledge of quirks of human thinking seems useful as a cautionary guide. Human memory is not just fallible about details, as people learn from their own experiences of misremembering, but is so malleable that a detailed, clear and vivid recollection of an event can be a total fabrication (Loftus 2017). People seek or interpret evidence in ways that are partial to their existing beliefs and expectations, often unconscious of their “confirmation bias” (Nickerson 1998). Not only are people subject to this and other cognitive biases (Kahneman 2011), of which they are typically unaware, but it may be counter-productive for one to make oneself aware of them and try consciously to counteract them or to counteract social biases such as racial or sexual stereotypes (Kenyon & Beaulac 2014). It is helpful to be aware of these facts and of the superior effectiveness of blocking the operation of biases—for example, by making an immediate record of one’s observations, refraining from forming a preliminary explanatory hypothesis, blind refereeing, double-blind randomized trials, and blind grading of students’ work. It is also helpful to be aware of the prevalence of “noise” (unwanted unsystematic variability of judgments), of how to detect noise (through a noise audit), and of how to reduce noise: make accuracy the goal, think statistically, break a process of arriving at a judgment into independent tasks, resist premature intuitions, in a group get independent judgments first, favour comparative judgments and scales (Kahneman, Sibony, & Sunstein 2021). It is helpful as well to be aware of the concept of “bounded rationality” in decision-making and of the related distinction between “satisficing” and optimizing (Simon 1956; Gigerenzer 2001).

Critical thinking about an issue requires substantive knowledge of the domain to which the issue belongs. Critical thinking abilities are not a magic elixir that can be applied to any issue whatever by somebody who has no knowledge of the facts relevant to exploring that issue. For example, the student in Bubbles needed to know that gases do not penetrate solid objects like a glass, that air expands when heated, that the volume of an enclosed gas varies directly with its temperature and inversely with its pressure, and that hot objects will spontaneously cool down to the ambient temperature of their surroundings unless kept hot by insulation or a source of heat. Critical thinkers thus need a rich fund of subject-matter knowledge relevant to the variety of situations they encounter. This fact is recognized in the inclusion among critical thinking dispositions of a concern to become and remain generally well informed.

Experimental educational interventions, with control groups, have shown that education can improve critical thinking skills and dispositions, as measured by standardized tests. For information about these tests, see the Supplement on Assessment .

What educational methods are most effective at developing the dispositions, abilities and knowledge of a critical thinker? In a comprehensive meta-analysis of experimental and quasi-experimental studies of strategies for teaching students to think critically, Abrami et al. (2015) found that dialogue, anchored instruction, and mentoring each increased the effectiveness of the educational intervention, and that they were most effective when combined. They also found that in these studies a combination of separate instruction in critical thinking with subject-matter instruction in which students are encouraged to think critically was more effective than either by itself. However, the difference was not statistically significant; that is, it might have arisen by chance.

Most of these studies lack the longitudinal follow-up required to determine whether the observed differential improvements in critical thinking abilities or dispositions continue over time, for example until high school or college graduation. For details on studies of methods of developing critical thinking skills and dispositions, see the Supplement on Educational Methods .

12. Controversies

Scholars have denied the generalizability of critical thinking abilities across subject domains, have alleged bias in critical thinking theory and pedagogy, and have investigated the relationship of critical thinking to other kinds of thinking.

McPeck (1981) attacked the thinking skills movement of the 1970s, including the critical thinking movement. He argued that there are no general thinking skills, since thinking is always thinking about some subject-matter. It is futile, he claimed, for schools and colleges to teach thinking as if it were a separate subject. Rather, teachers should lead their pupils to become autonomous thinkers by teaching school subjects in a way that brings out their cognitive structure and that encourages and rewards discussion and argument. As some of his critics (e.g., Paul 1985; Siegel 1985) pointed out, McPeck’s central argument needs elaboration, since it has obvious counter-examples in writing and speaking, for which (up to a certain level of complexity) there are teachable general abilities even though they are always about some subject-matter. To make his argument convincing, McPeck needs to explain how thinking differs from writing and speaking in a way that does not permit useful abstraction of its components from the subject-matters with which it deals. He has not done so. Nevertheless, his position that the dispositions and abilities of a critical thinker are best developed in the context of subject-matter instruction is shared by many theorists of critical thinking, including Dewey (1910, 1933), Glaser (1941), Passmore (1980), Weinstein (1990), Bailin et al. (1999b), and Willingham (2019).

McPeck’s challenge prompted reflection on the extent to which critical thinking is subject-specific. McPeck argued for a strong subject-specificity thesis, according to which it is a conceptual truth that all critical thinking abilities are specific to a subject. (He did not however extend his subject-specificity thesis to critical thinking dispositions. In particular, he took the disposition to suspend judgment in situations of cognitive dissonance to be a general disposition.) Conceptual subject-specificity is subject to obvious counter-examples, such as the general ability to recognize confusion of necessary and sufficient conditions. A more modest thesis, also endorsed by McPeck, is epistemological subject-specificity, according to which the norms of good thinking vary from one field to another. Epistemological subject-specificity clearly holds to a certain extent; for example, the principles in accordance with which one solves a differential equation are quite different from the principles in accordance with which one determines whether a painting is a genuine Picasso. But the thesis suffers, as Ennis (1989) points out, from vagueness of the concept of a field or subject and from the obvious existence of inter-field principles, however broadly the concept of a field is construed. For example, the principles of hypothetico-deductive reasoning hold for all the varied fields in which such reasoning occurs. A third kind of subject-specificity is empirical subject-specificity, according to which as a matter of empirically observable fact a person with the abilities and dispositions of a critical thinker in one area of investigation will not necessarily have them in another area of investigation.

The thesis of empirical subject-specificity raises the general problem of transfer. If critical thinking abilities and dispositions have to be developed independently in each school subject, how are they of any use in dealing with the problems of everyday life and the political and social issues of contemporary society, most of which do not fit into the framework of a traditional school subject? Proponents of empirical subject-specificity tend to argue that transfer is more likely to occur if there is critical thinking instruction in a variety of domains, with explicit attention to dispositions and abilities that cut across domains. But evidence for this claim is scanty. There is a need for well-designed empirical studies that investigate the conditions that make transfer more likely.

It is common ground in debates about the generality or subject-specificity of critical thinking dispositions and abilities that critical thinking about any topic requires background knowledge about the topic. For example, the most sophisticated understanding of the principles of hypothetico-deductive reasoning is of no help unless accompanied by some knowledge of what might be plausible explanations of some phenomenon under investigation.

Critics have objected to bias in the theory, pedagogy and practice of critical thinking. Commentators (e.g., Alston 1995; Ennis 1998) have noted that anyone who takes a position has a bias in the neutral sense of being inclined in one direction rather than others. The critics, however, are objecting to bias in the pejorative sense of an unjustified favoring of certain ways of knowing over others, frequently alleging that the unjustly favoured ways are those of a dominant sex or culture (Bailin 1995). These ways favour:

  • reinforcement of egocentric and sociocentric biases over dialectical engagement with opposing world-views (Paul 1981, 1984; Warren 1998)
  • distancing from the object of inquiry over closeness to it (Martin 1992; Thayer-Bacon 1992)
  • indifference to the situation of others over care for them (Martin 1992)
  • orientation to thought over orientation to action (Martin 1992)
  • being reasonable over caring to understand people’s ideas (Thayer-Bacon 1993)
  • being neutral and objective over being embodied and situated (Thayer-Bacon 1995a)
  • doubting over believing (Thayer-Bacon 1995b)
  • reason over emotion, imagination and intuition (Thayer-Bacon 2000)
  • solitary thinking over collaborative thinking (Thayer-Bacon 2000)
  • written and spoken assignments over other forms of expression (Alston 2001)
  • attention to written and spoken communications over attention to human problems (Alston 2001)
  • winning debates in the public sphere over making and understanding meaning (Alston 2001)

A common thread in this smorgasbord of accusations is dissatisfaction with focusing on the logical analysis and evaluation of reasoning and arguments. While these authors acknowledge that such analysis and evaluation is part of critical thinking and should be part of its conceptualization and pedagogy, they insist that it is only a part. Paul (1981), for example, bemoans the tendency of atomistic teaching of methods of analyzing and evaluating arguments to turn students into more able sophists, adept at finding fault with positions and arguments with which they disagree but even more entrenched in the egocentric and sociocentric biases with which they began. Martin (1992) and Thayer-Bacon (1992) cite with approval the self-reported intimacy with their subject-matter of leading researchers in biology and medicine, an intimacy that conflicts with the distancing allegedly recommended in standard conceptions and pedagogy of critical thinking. Thayer-Bacon (2000) contrasts the embodied and socially embedded learning of her elementary school students in a Montessori school, who used their imagination, intuition and emotions as well as their reason, with conceptions of critical thinking as

thinking that is used to critique arguments, offer justifications, and make judgments about what are the good reasons, or the right answers. (Thayer-Bacon 2000: 127–128)

Alston (2001) reports that her students in a women’s studies class were able to see the flaws in the Cinderella myth that pervades much romantic fiction but in their own romantic relationships still acted as if all failures were the woman’s fault and still accepted the notions of love at first sight and living happily ever after. Students, she writes, should

be able to connect their intellectual critique to a more affective, somatic, and ethical account of making risky choices that have sexist, racist, classist, familial, sexual, or other consequences for themselves and those both near and far… critical thinking that reads arguments, texts, or practices merely on the surface without connections to feeling/desiring/doing or action lacks an ethical depth that should infuse the difference between mere cognitive activity and something we want to call critical thinking. (Alston 2001: 34)

Some critics portray such biases as unfair to women. Thayer-Bacon (1992), for example, has charged modern critical thinking theory with being sexist, on the ground that it separates the self from the object and causes one to lose touch with one’s inner voice, and thus stigmatizes women, who (she asserts) link self to object and listen to their inner voice. Her charge does not imply that women as a group are on average less able than men to analyze and evaluate arguments. Facione (1990c) found no difference by sex in performance on his California Critical Thinking Skills Test. Kuhn (1991: 280–281) found no difference by sex in either the disposition or the competence to engage in argumentative thinking.

The critics propose a variety of remedies for the biases that they allege. In general, they do not propose to eliminate or downplay critical thinking as an educational goal. Rather, they propose to conceptualize critical thinking differently and to change its pedagogy accordingly. Their pedagogical proposals arise logically from their objections. They can be summarized as follows:

  • Focus on argument networks with dialectical exchanges reflecting contesting points of view rather than on atomic arguments, so as to develop “strong sense” critical thinking that transcends egocentric and sociocentric biases (Paul 1981, 1984).
  • Foster closeness to the subject-matter and feeling connected to others in order to inform a humane democracy (Martin 1992).
  • Develop “constructive thinking” as a social activity in a community of physically embodied and socially embedded inquirers with personal voices who value not only reason but also imagination, intuition and emotion (Thayer-Bacon 2000).
  • In developing critical thinking in school subjects, treat as important neither skills nor dispositions but opening worlds of meaning (Alston 2001).
  • Attend to the development of critical thinking dispositions as well as skills, and adopt the “critical pedagogy” practised and advocated by Freire (1968 [1970]) and hooks (1994) (Dalgleish, Girard, & Davies 2017).

A common thread in these proposals is treatment of critical thinking as a social, interactive, personally engaged activity like that of a quilting bee or a barn-raising (Thayer-Bacon 2000) rather than as an individual, solitary, distanced activity symbolized by Rodin’s The Thinker . One can get a vivid description of education with the former type of goal from the writings of bell hooks (1994, 2010). Critical thinking for her is open-minded dialectical exchange across opposing standpoints and from multiple perspectives, a conception similar to Paul’s “strong sense” critical thinking (Paul 1981). She abandons the structure of domination in the traditional classroom. In an introductory course on black women writers, for example, she assigns students to write an autobiographical paragraph about an early racial memory, then to read it aloud as the others listen, thus affirming the uniqueness and value of each voice and creating a communal awareness of the diversity of the group’s experiences (hooks 1994: 84). Her “engaged pedagogy” is thus similar to the “freedom under guidance” implemented in John Dewey’s Laboratory School of Chicago in the late 1890s and early 1900s. It incorporates the dialogue, anchored instruction, and mentoring that Abrami (2015) found to be most effective in improving critical thinking skills and dispositions.

What is the relationship of critical thinking to problem solving, decision-making, higher-order thinking, creative thinking, and other recognized types of thinking? One’s answer to this question obviously depends on how one defines the terms used in the question. If critical thinking is conceived broadly to cover any careful thinking about any topic for any purpose, then problem solving and decision making will be kinds of critical thinking, if they are done carefully. Historically, ‘critical thinking’ and ‘problem solving’ were two names for the same thing. If critical thinking is conceived more narrowly as consisting solely of appraisal of intellectual products, then it will be disjoint with problem solving and decision making, which are constructive.

Bloom’s taxonomy of educational objectives used the phrase “intellectual abilities and skills” for what had been labeled “critical thinking” by some, “reflective thinking” by Dewey and others, and “problem solving” by still others (Bloom et al. 1956: 38). Thus, the so-called “higher-order thinking skills” at the taxonomy’s top levels of analysis, synthesis and evaluation are just critical thinking skills, although they do not come with general criteria for their assessment (Ennis 1981b). The revised version of Bloom’s taxonomy (Anderson et al. 2001) likewise treats critical thinking as cutting across those types of cognitive process that involve more than remembering (Anderson et al. 2001: 269–270). For details, see the Supplement on History .

As to creative thinking, it overlaps with critical thinking (Bailin 1987, 1988). Thinking about the explanation of some phenomenon or event, as in Ferryboat , requires creative imagination in constructing plausible explanatory hypotheses. Likewise, thinking about a policy question, as in Candidate , requires creativity in coming up with options. Conversely, creativity in any field needs to be balanced by critical appraisal of the draft painting or novel or mathematical theory.

  • Abrami, Philip C., Robert M. Bernard, Eugene Borokhovski, David I. Waddington, C. Anne Wade, and Tonje Person, 2015, “Strategies for Teaching Students to Think Critically: A Meta-analysis”, Review of Educational Research , 85(2): 275–314. doi:10.3102/0034654314551063
  • Aikin, Wilford M., 1942, The Story of the Eight-year Study, with Conclusions and Recommendations , Volume I of Adventure in American Education , New York and London: Harper & Brothers. [ Aikin 1942 available online ]
  • Alston, Kal, 1995, “Begging the Question: Is Critical Thinking Biased?”, Educational Theory , 45(2): 225–233. doi:10.1111/j.1741-5446.1995.00225.x
  • –––, 2001, “Re/Thinking Critical Thinking: The Seductions of Everyday Life”, Studies in Philosophy and Education , 20(1): 27–40. doi:10.1023/A:1005247128053
  • American Educational Research Association, 2014, Standards for Educational and Psychological Testing / American Educational Research Association, American Psychological Association, National Council on Measurement in Education , Washington, DC: American Educational Research Association.
  • Anderson, Lorin W., David R. Krathwohl, Peter W. Airiasian, Kathleen A. Cruikshank, Richard E. Mayer, Paul R. Pintrich, James Raths, and Merlin C. Wittrock, 2001, A Taxonomy for Learning, Teaching and Assessing: A Revision of Bloom’s Taxonomy of Educational Objectives , New York: Longman, complete edition.
  • Bailin, Sharon, 1987, “Critical and Creative Thinking”, Informal Logic , 9(1): 23–30. [ Bailin 1987 available online ]
  • –––, 1988, Achieving Extraordinary Ends: An Essay on Creativity , Dordrecht: Kluwer. doi:10.1007/978-94-009-2780-3
  • –––, 1995, “Is Critical Thinking Biased? Clarifications and Implications”, Educational Theory , 45(2): 191–197. doi:10.1111/j.1741-5446.1995.00191.x
  • Bailin, Sharon and Mark Battersby, 2009, “Inquiry: A Dialectical Approach to Teaching Critical Thinking”, in Juho Ritola (ed.), Argument Cultures: Proceedings of OSSA 09 , CD-ROM (pp. 1–10), Windsor, ON: OSSA. [ Bailin & Battersby 2009 available online ]
  • –––, 2016a, “Fostering the Virtues of Inquiry”, Topoi , 35(2): 367–374. doi:10.1007/s11245-015-9307-6
  • –––, 2016b, Reason in the Balance: An Inquiry Approach to Critical Thinking , Indianapolis: Hackett, 2nd edition.
  • –––, 2021, “Inquiry: Teaching for Reasoned Judgment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 31–46. doi: 10.1163/9789004444591_003
  • Bailin, Sharon, Roland Case, Jerrold R. Coombs, and Leroi B. Daniels, 1999a, “Common Misconceptions of Critical Thinking”, Journal of Curriculum Studies , 31(3): 269–283. doi:10.1080/002202799183124
  • –––, 1999b, “Conceptualizing Critical Thinking”, Journal of Curriculum Studies , 31(3): 285–302. doi:10.1080/002202799183133
  • Blair, J. Anthony, 2021, Studies in Critical Thinking , Windsor, ON: Windsor Studies in Argumentation, 2nd edition. [Available online at https://windsor.scholarsportal.info/omp/index.php/wsia/catalog/book/106]
  • Berman, Alan M., Seth J. Schwartz, William M. Kurtines, and Steven L. Berman, 2001, “The Process of Exploration in Identity Formation: The Role of Style and Competence”, Journal of Adolescence , 24(4): 513–528. doi:10.1006/jado.2001.0386
  • Black, Beth (ed.), 2012, An A to Z of Critical Thinking , London: Continuum International Publishing Group.
  • Bloom, Benjamin Samuel, Max D. Engelhart, Edward J. Furst, Walter H. Hill, and David R. Krathwohl, 1956, Taxonomy of Educational Objectives. Handbook I: Cognitive Domain , New York: David McKay.
  • Boardman, Frank, Nancy M. Cavender, and Howard Kahane, 2018, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Boston: Cengage, 13th edition.
  • Browne, M. Neil and Stuart M. Keeley, 2018, Asking the Right Questions: A Guide to Critical Thinking , Hoboken, NJ: Pearson, 12th edition.
  • Center for Assessment & Improvement of Learning, 2017, Critical Thinking Assessment Test , Cookeville, TN: Tennessee Technological University.
  • Cleghorn, Paul. 2021. “Critical Thinking in the Elementary School: Practical Guidance for Building a Culture of Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessmen t, Leiden: Brill, pp. 150–167. doi: 10.1163/9789004444591_010
  • Cohen, Jacob, 1988, Statistical Power Analysis for the Behavioral Sciences , Hillsdale, NJ: Lawrence Erlbaum Associates, 2nd edition.
  • College Board, 1983, Academic Preparation for College. What Students Need to Know and Be Able to Do , New York: College Entrance Examination Board, ERIC document ED232517.
  • Commission on the Relation of School and College of the Progressive Education Association, 1943, Thirty Schools Tell Their Story , Volume V of Adventure in American Education , New York and London: Harper & Brothers.
  • Council for Aid to Education, 2017, CLA+ Student Guide . Available at http://cae.org/images/uploads/pdf/CLA_Student_Guide_Institution.pdf ; last accessed 2022 07 16.
  • Dalgleish, Adam, Patrick Girard, and Maree Davies, 2017, “Critical Thinking, Bias and Feminist Philosophy: Building a Better Framework through Collaboration”, Informal Logic , 37(4): 351–369. [ Dalgleish et al. available online ]
  • Dewey, John, 1910, How We Think , Boston: D.C. Heath. [ Dewey 1910 available online ]
  • –––, 1916, Democracy and Education: An Introduction to the Philosophy of Education , New York: Macmillan.
  • –––, 1933, How We Think: A Restatement of the Relation of Reflective Thinking to the Educative Process , Lexington, MA: D.C. Heath.
  • –––, 1936, “The Theory of the Chicago Experiment”, Appendix II of Mayhew & Edwards 1936: 463–477.
  • –––, 1938, Logic: The Theory of Inquiry , New York: Henry Holt and Company.
  • Dominguez, Caroline (coord.), 2018a, A European Collection of the Critical Thinking Skills and Dispositions Needed in Different Professional Fields for the 21st Century , Vila Real, Portugal: UTAD. Available at http://bit.ly/CRITHINKEDUO1 ; last accessed 2022 07 16.
  • ––– (coord.), 2018b, A European Review on Critical Thinking Educational Practices in Higher Education Institutions , Vila Real: UTAD. Available at http://bit.ly/CRITHINKEDUO2 ; last accessed 2022 07 16.
  • ––– (coord.), 2018c, The CRITHINKEDU European Course on Critical Thinking Education for University Teachers: From Conception to Delivery , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU03; last accessed 2022 07 16.
  • Dominguez Caroline and Rita Payan-Carreira (eds.), 2019, Promoting Critical Thinking in European Higher Education Institutions: Towards an Educational Protocol , Vila Real: UTAD. Available at http:/bit.ly/CRITHINKEDU04; last accessed 2022 07 16.
  • Ennis, Robert H., 1958, “An Appraisal of the Watson-Glaser Critical Thinking Appraisal”, The Journal of Educational Research , 52(4): 155–158. doi:10.1080/00220671.1958.10882558
  • –––, 1962, “A Concept of Critical Thinking: A Proposed Basis for Research on the Teaching and Evaluation of Critical Thinking Ability”, Harvard Educational Review , 32(1): 81–111.
  • –––, 1981a, “A Conception of Deductive Logical Competence”, Teaching Philosophy , 4(3/4): 337–385. doi:10.5840/teachphil198143/429
  • –––, 1981b, “Eight Fallacies in Bloom’s Taxonomy”, in C. J. B. Macmillan (ed.), Philosophy of Education 1980: Proceedings of the Thirty-seventh Annual Meeting of the Philosophy of Education Society , Bloomington, IL: Philosophy of Education Society, pp. 269–273.
  • –––, 1984, “Problems in Testing Informal Logic, Critical Thinking, Reasoning Ability”, Informal Logic , 6(1): 3–9. [ Ennis 1984 available online ]
  • –––, 1987, “A Taxonomy of Critical Thinking Dispositions and Abilities”, in Joan Boykoff Baron and Robert J. Sternberg (eds.), Teaching Thinking Skills: Theory and Practice , New York: W. H. Freeman, pp. 9–26.
  • –––, 1989, “Critical Thinking and Subject Specificity: Clarification and Needed Research”, Educational Researcher , 18(3): 4–10. doi:10.3102/0013189X018003004
  • –––, 1991, “Critical Thinking: A Streamlined Conception”, Teaching Philosophy , 14(1): 5–24. doi:10.5840/teachphil19911412
  • –––, 1996, “Critical Thinking Dispositions: Their Nature and Assessability”, Informal Logic , 18(2–3): 165–182. [ Ennis 1996 available online ]
  • –––, 1998, “Is Critical Thinking Culturally Biased?”, Teaching Philosophy , 21(1): 15–33. doi:10.5840/teachphil19982113
  • –––, 2011, “Critical Thinking: Reflection and Perspective Part I”, Inquiry: Critical Thinking across the Disciplines , 26(1): 4–18. doi:10.5840/inquiryctnews20112613
  • –––, 2013, “Critical Thinking across the Curriculum: The Wisdom CTAC Program”, Inquiry: Critical Thinking across the Disciplines , 28(2): 25–45. doi:10.5840/inquiryct20132828
  • –––, 2016, “Definition: A Three-Dimensional Analysis with Bearing on Key Concepts”, in Patrick Bondy and Laura Benacquista (eds.), Argumentation, Objectivity, and Bias: Proceedings of the 11th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 18–21 May 2016 , Windsor, ON: OSSA, pp. 1–19. Available at http://scholar.uwindsor.ca/ossaarchive/OSSA11/papersandcommentaries/105 ; last accessed 2022 07 16.
  • –––, 2018, “Critical Thinking Across the Curriculum: A Vision”, Topoi , 37(1): 165–184. doi:10.1007/s11245-016-9401-4
  • Ennis, Robert H., and Jason Millman, 1971, Manual for Cornell Critical Thinking Test, Level X, and Cornell Critical Thinking Test, Level Z , Urbana, IL: Critical Thinking Project, University of Illinois.
  • Ennis, Robert H., Jason Millman, and Thomas Norbert Tomko, 1985, Cornell Critical Thinking Tests Level X & Level Z: Manual , Pacific Grove, CA: Midwest Publication, 3rd edition.
  • –––, 2005, Cornell Critical Thinking Tests Level X & Level Z: Manual , Seaside, CA: Critical Thinking Company, 5th edition.
  • Ennis, Robert H. and Eric Weir, 1985, The Ennis-Weir Critical Thinking Essay Test: Test, Manual, Criteria, Scoring Sheet: An Instrument for Teaching and Testing , Pacific Grove, CA: Midwest Publications.
  • Facione, Peter A., 1990a, Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction , Research Findings and Recommendations Prepared for the Committee on Pre-College Philosophy of the American Philosophical Association, ERIC Document ED315423.
  • –––, 1990b, California Critical Thinking Skills Test, CCTST – Form A , Millbrae, CA: The California Academic Press.
  • –––, 1990c, The California Critical Thinking Skills Test--College Level. Technical Report #3. Gender, Ethnicity, Major, CT Self-Esteem, and the CCTST , ERIC Document ED326584.
  • –––, 1992, California Critical Thinking Skills Test: CCTST – Form B, Millbrae, CA: The California Academic Press.
  • –––, 2000, “The Disposition Toward Critical Thinking: Its Character, Measurement, and Relationship to Critical Thinking Skill”, Informal Logic , 20(1): 61–84. [ Facione 2000 available online ]
  • Facione, Peter A. and Noreen C. Facione, 1992, CCTDI: A Disposition Inventory , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Noreen C. Facione, and Carol Ann F. Giancarlo, 2001, California Critical Thinking Disposition Inventory: CCTDI: Inventory Manual , Millbrae, CA: The California Academic Press.
  • Facione, Peter A., Carol A. Sánchez, and Noreen C. Facione, 1994, Are College Students Disposed to Think? , Millbrae, CA: The California Academic Press. ERIC Document ED368311.
  • Fisher, Alec, and Michael Scriven, 1997, Critical Thinking: Its Definition and Assessment , Norwich: Centre for Research in Critical Thinking, University of East Anglia.
  • Freire, Paulo, 1968 [1970], Pedagogia do Oprimido . Translated as Pedagogy of the Oppressed , Myra Bergman Ramos (trans.), New York: Continuum, 1970.
  • Gigerenzer, Gerd, 2001, “The Adaptive Toolbox”, in Gerd Gigerenzer and Reinhard Selten (eds.), Bounded Rationality: The Adaptive Toolbox , Cambridge, MA: MIT Press, pp. 37–50.
  • Glaser, Edward Maynard, 1941, An Experiment in the Development of Critical Thinking , New York: Bureau of Publications, Teachers College, Columbia University.
  • Groarke, Leo A. and Christopher W. Tindale, 2012, Good Reasoning Matters! A Constructive Approach to Critical Thinking , Don Mills, ON: Oxford University Press, 5th edition.
  • Halpern, Diane F., 1998, “Teaching Critical Thinking for Transfer Across Domains: Disposition, Skills, Structure Training, and Metacognitive Monitoring”, American Psychologist , 53(4): 449–455. doi:10.1037/0003-066X.53.4.449
  • –––, 2016, Manual: Halpern Critical Thinking Assessment , Mödling, Austria: Schuhfried. Available at https://pdfcoffee.com/hcta-test-manual-pdf-free.html; last accessed 2022 07 16.
  • Hamby, Benjamin, 2014, The Virtues of Critical Thinkers , Doctoral dissertation, Philosophy, McMaster University. [ Hamby 2014 available online ]
  • –––, 2015, “Willingness to Inquire: The Cardinal Critical Thinking Virtue”, in Martin Davies and Ronald Barnett (eds.), The Palgrave Handbook of Critical Thinking in Higher Education , New York: Palgrave Macmillan, pp. 77–87.
  • Haran, Uriel, Ilana Ritov, and Barbara A. Mellers, 2013, “The Role of Actively Open-minded Thinking in Information Acquisition, Accuracy, and Calibration”, Judgment and Decision Making , 8(3): 188–201.
  • Hatcher, Donald and Kevin Possin, 2021, “Commentary: Thinking Critically about Critical Thinking Assessment”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 298–322. doi: 10.1163/9789004444591_017
  • Haynes, Ada, Elizabeth Lisic, Kevin Harris, Katie Leming, Kyle Shanks, and Barry Stein, 2015, “Using the Critical Thinking Assessment Test (CAT) as a Model for Designing Within-Course Assessments: Changing How Faculty Assess Student Learning”, Inquiry: Critical Thinking Across the Disciplines , 30(3): 38–48. doi:10.5840/inquiryct201530316
  • Haynes, Ada and Barry Stein, 2021, “Observations from a Long-Term Effort to Assess and Improve Critical Thinking”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 231–254. doi: 10.1163/9789004444591_014
  • Hiner, Amanda L. 2021. “Equipping Students for Success in College and Beyond: Placing Critical Thinking Instruction at the Heart of a General Education Program”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 188–208. doi: 10.1163/9789004444591_012
  • Hitchcock, David, 2017, “Critical Thinking as an Educational Ideal”, in his On Reasoning and Argument: Essays in Informal Logic and on Critical Thinking , Dordrecht: Springer, pp. 477–497. doi:10.1007/978-3-319-53562-3_30
  • –––, 2021, “Seven Philosophical Implications of Critical Thinking: Themes, Variations, Implications”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 9–30. doi: 10.1163/9789004444591_002
  • hooks, bell, 1994, Teaching to Transgress: Education as the Practice of Freedom , New York and London: Routledge.
  • –––, 2010, Teaching Critical Thinking: Practical Wisdom , New York and London: Routledge.
  • Johnson, Ralph H., 1992, “The Problem of Defining Critical Thinking”, in Stephen P, Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 38–53.
  • Kahane, Howard, 1971, Logic and Contemporary Rhetoric: The Use of Reason in Everyday Life , Belmont, CA: Wadsworth.
  • Kahneman, Daniel, 2011, Thinking, Fast and Slow , New York: Farrar, Straus and Giroux.
  • Kahneman, Daniel, Olivier Sibony, & Cass R. Sunstein, 2021, Noise: A Flaw in Human Judgment , New York: Little, Brown Spark.
  • Kenyon, Tim, and Guillaume Beaulac, 2014, “Critical Thinking Education and Debasing”, Informal Logic , 34(4): 341–363. [ Kenyon & Beaulac 2014 available online ]
  • Krathwohl, David R., Benjamin S. Bloom, and Bertram B. Masia, 1964, Taxonomy of Educational Objectives, Handbook II: Affective Domain , New York: David McKay.
  • Kuhn, Deanna, 1991, The Skills of Argument , New York: Cambridge University Press. doi:10.1017/CBO9780511571350
  • –––, 2019, “Critical Thinking as Discourse”, Human Development, 62 (3): 146–164. doi:10.1159/000500171
  • Lipman, Matthew, 1987, “Critical Thinking–What Can It Be?”, Analytic Teaching , 8(1): 5–12. [ Lipman 1987 available online ]
  • –––, 2003, Thinking in Education , Cambridge: Cambridge University Press, 2nd edition.
  • Loftus, Elizabeth F., 2017, “Eavesdropping on Memory”, Annual Review of Psychology , 68: 1–18. doi:10.1146/annurev-psych-010416-044138
  • Makaiau, Amber Strong, 2021, “The Good Thinker’s Tool Kit: How to Engage Critical Thinking and Reasoning in Secondary Education”, in Daniel Fasko, Jr. and Frank Fair (eds.), Critical Thinking and Reasoning: Theory, Development, Instruction, and Assessment , Leiden: Brill, pp. 168–187. doi: 10.1163/9789004444591_011
  • Martin, Jane Roland, 1992, “Critical Thinking for a Humane World”, in Stephen P. Norris (ed.), The Generalizability of Critical Thinking , New York: Teachers College Press, pp. 163–180.
  • Mayhew, Katherine Camp, and Anna Camp Edwards, 1936, The Dewey School: The Laboratory School of the University of Chicago, 1896–1903 , New York: Appleton-Century. [ Mayhew & Edwards 1936 available online ]
  • McPeck, John E., 1981, Critical Thinking and Education , New York: St. Martin’s Press.
  • Moore, Brooke Noel and Richard Parker, 2020, Critical Thinking , New York: McGraw-Hill, 13th edition.
  • Nickerson, Raymond S., 1998, “Confirmation Bias: A Ubiquitous Phenomenon in Many Guises”, Review of General Psychology , 2(2): 175–220. doi:10.1037/1089-2680.2.2.175
  • Nieto, Ana Maria, and Jorge Valenzuela, 2012, “A Study of the Internal Structure of Critical Thinking Dispositions”, Inquiry: Critical Thinking across the Disciplines , 27(1): 31–38. doi:10.5840/inquiryct20122713
  • Norris, Stephen P., 1985, “Controlling for Background Beliefs When Developing Multiple-choice Critical Thinking Tests”, Educational Measurement: Issues and Practice , 7(3): 5–11. doi:10.1111/j.1745-3992.1988.tb00437.x
  • Norris, Stephen P. and Robert H. Ennis, 1989, Evaluating Critical Thinking (The Practitioners’ Guide to Teaching Thinking Series), Pacific Grove, CA: Midwest Publications.
  • Norris, Stephen P. and Ruth Elizabeth King, 1983, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1984, The Design of a Critical Thinking Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland. ERIC Document ED260083.
  • –––, 1985, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland.
  • –––, 1990a, Test on Appraising Observations , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • –––, 1990b, Test on Appraising Observations: Manual , St. John’s, NL: Institute for Educational Research and Development, Memorial University of Newfoundland, 2nd edition.
  • OCR [Oxford, Cambridge and RSA Examinations], 2011, AS/A Level GCE: Critical Thinking – H052, H452 , Cambridge: OCR. Past papers available at https://pastpapers.co/ocr/?dir=A-Level/Critical-Thinking-H052-H452; last accessed 2022 07 16.
  • Ontario Ministry of Education, 2013, The Ontario Curriculum Grades 9 to 12: Social Sciences and Humanities . Available at http://www.edu.gov.on.ca/eng/curriculum/secondary/ssciences9to122013.pdf ; last accessed 2022 07 16.
  • Passmore, John Arthur, 1980, The Philosophy of Teaching , London: Duckworth.
  • Paul, Richard W., 1981, “Teaching Critical Thinking in the ‘Strong’ Sense: A Focus on Self-Deception, World Views, and a Dialectical Mode of Analysis”, Informal Logic , 4(2): 2–7. [ Paul 1981 available online ]
  • –––, 1984, “Critical Thinking: Fundamental to Education for a Free Society”, Educational Leadership , 42(1): 4–14.
  • –––, 1985, “McPeck’s Mistakes”, Informal Logic , 7(1): 35–43. [ Paul 1985 available online ]
  • Paul, Richard W. and Linda Elder, 2006, The Miniature Guide to Critical Thinking: Concepts and Tools , Dillon Beach, CA: Foundation for Critical Thinking, 4th edition.
  • Payette, Patricia, and Edna Ross, 2016, “Making a Campus-Wide Commitment to Critical Thinking: Insights and Promising Practices Utilizing the Paul-Elder Approach at the University of Louisville”, Inquiry: Critical Thinking Across the Disciplines , 31(1): 98–110. doi:10.5840/inquiryct20163118
  • Possin, Kevin, 2008, “A Field Guide to Critical-Thinking Assessment”, Teaching Philosophy , 31(3): 201–228. doi:10.5840/teachphil200831324
  • –––, 2013a, “Some Problems with the Halpern Critical Thinking Assessment (HCTA) Test”, Inquiry: Critical Thinking across the Disciplines , 28(3): 4–12. doi:10.5840/inquiryct201328313
  • –––, 2013b, “A Serious Flaw in the Collegiate Learning Assessment (CLA) Test”, Informal Logic , 33(3): 390–405. [ Possin 2013b available online ]
  • –––, 2013c, “A Fatal Flaw in the Collegiate Learning Assessment Test”, Assessment Update , 25 (1): 8–12.
  • –––, 2014, “Critique of the Watson-Glaser Critical Thinking Appraisal Test: The More You Know, the Lower Your Score”, Informal Logic , 34(4): 393–416. [ Possin 2014 available online ]
  • –––, 2020, “CAT Scan: A Critical Review of the Critical-Thinking Assessment Test”, Informal Logic , 40 (3): 489–508. [Available online at https://informallogic.ca/index.php/informal_logic/article/view/6243]
  • Rawls, John, 1971, A Theory of Justice , Cambridge, MA: Harvard University Press.
  • Rear, David, 2019, “One Size Fits All? The Limitations of Standardised Assessment in Critical Thinking”, Assessment & Evaluation in Higher Education , 44(5): 664–675. doi: 10.1080/02602938.2018.1526255
  • Rousseau, Jean-Jacques, 1762, Émile , Amsterdam: Jean Néaulme.
  • Scheffler, Israel, 1960, The Language of Education , Springfield, IL: Charles C. Thomas.
  • Scriven, Michael, and Richard W. Paul, 1987, Defining Critical Thinking , Draft statement written for the National Council for Excellence in Critical Thinking Instruction. Available at http://www.criticalthinking.org/pages/defining-critical-thinking/766 ; last accessed 2022 07 16.
  • Sheffield, Clarence Burton Jr., 2018, “Promoting Critical Thinking in Higher Education: My Experiences as the Inaugural Eugene H. Fram Chair in Applied Critical Thinking at Rochester Institute of Technology”, Topoi , 37(1): 155–163. doi:10.1007/s11245-016-9392-1
  • Siegel, Harvey, 1985, “McPeck, Informal Logic and the Nature of Critical Thinking”, in David Nyberg (ed.), Philosophy of Education 1985: Proceedings of the Forty-First Annual Meeting of the Philosophy of Education Society , Normal, IL: Philosophy of Education Society, pp. 61–72.
  • –––, 1988, Educating Reason: Rationality, Critical Thinking, and Education , New York: Routledge.
  • –––, 1999, “What (Good) Are Thinking Dispositions?”, Educational Theory , 49(2): 207–221. doi:10.1111/j.1741-5446.1999.00207.x
  • Simon, Herbert A., 1956, “Rational Choice and the Structure of the Environment”, Psychological Review , 63(2): 129–138. doi: 10.1037/h0042769
  • Simpson, Elizabeth, 1966–67, “The Classification of Educational Objectives: Psychomotor Domain”, Illinois Teacher of Home Economics , 10(4): 110–144, ERIC document ED0103613. [ Simpson 1966–67 available online ]
  • Skolverket, 2018, Curriculum for the Compulsory School, Preschool Class and School-age Educare , Stockholm: Skolverket, revised 2018. Available at https://www.skolverket.se/download/18.31c292d516e7445866a218f/1576654682907/pdf3984.pdf; last accessed 2022 07 15.
  • Smith, B. Othanel, 1953, “The Improvement of Critical Thinking”, Progressive Education , 30(5): 129–134.
  • Smith, Eugene Randolph, Ralph Winfred Tyler, and the Evaluation Staff, 1942, Appraising and Recording Student Progress , Volume III of Adventure in American Education , New York and London: Harper & Brothers.
  • Splitter, Laurance J., 1987, “Educational Reform through Philosophy for Children”, Thinking: The Journal of Philosophy for Children , 7(2): 32–39. doi:10.5840/thinking1987729
  • Stanovich Keith E., and Paula J. Stanovich, 2010, “A Framework for Critical Thinking, Rational Thinking, and Intelligence”, in David D. Preiss and Robert J. Sternberg (eds), Innovations in Educational Psychology: Perspectives on Learning, Teaching and Human Development , New York: Springer Publishing, pp 195–237.
  • Stanovich Keith E., Richard F. West, and Maggie E. Toplak, 2011, “Intelligence and Rationality”, in Robert J. Sternberg and Scott Barry Kaufman (eds.), Cambridge Handbook of Intelligence , Cambridge: Cambridge University Press, 3rd edition, pp. 784–826. doi:10.1017/CBO9780511977244.040
  • Tankersley, Karen, 2005, Literacy Strategies for Grades 4–12: Reinforcing the Threads of Reading , Alexandria, VA: Association for Supervision and Curriculum Development.
  • Thayer-Bacon, Barbara J., 1992, “Is Modern Critical Thinking Theory Sexist?”, Inquiry: Critical Thinking Across the Disciplines , 10(1): 3–7. doi:10.5840/inquiryctnews199210123
  • –––, 1993, “Caring and Its Relationship to Critical Thinking”, Educational Theory , 43(3): 323–340. doi:10.1111/j.1741-5446.1993.00323.x
  • –––, 1995a, “Constructive Thinking: Personal Voice”, Journal of Thought , 30(1): 55–70.
  • –––, 1995b, “Doubting and Believing: Both are Important for Critical Thinking”, Inquiry: Critical Thinking across the Disciplines , 15(2): 59–66. doi:10.5840/inquiryctnews199515226
  • –––, 2000, Transforming Critical Thinking: Thinking Constructively , New York: Teachers College Press.
  • Toulmin, Stephen Edelston, 1958, The Uses of Argument , Cambridge: Cambridge University Press.
  • Turri, John, Mark Alfano, and John Greco, 2017, “Virtue Epistemology”, in Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy (Winter 2017 Edition). URL = < https://plato.stanford.edu/archives/win2017/entries/epistemology-virtue/ >
  • Vincent-Lancrin, Stéphan, Carlos González-Sancho, Mathias Bouckaert, Federico de Luca, Meritxell Fernández-Barrerra, Gwénaël Jacotin, Joaquin Urgel, and Quentin Vidal, 2019, Fostering Students’ Creativity and Critical Thinking: What It Means in School. Educational Research and Innovation , Paris: OECD Publishing.
  • Warren, Karen J. 1988. “Critical Thinking and Feminism”, Informal Logic , 10(1): 31–44. [ Warren 1988 available online ]
  • Watson, Goodwin, and Edward M. Glaser, 1980a, Watson-Glaser Critical Thinking Appraisal, Form A , San Antonio, TX: Psychological Corporation.
  • –––, 1980b, Watson-Glaser Critical Thinking Appraisal: Forms A and B; Manual , San Antonio, TX: Psychological Corporation,
  • –––, 1994, Watson-Glaser Critical Thinking Appraisal, Form B , San Antonio, TX: Psychological Corporation.
  • Weinstein, Mark, 1990, “Towards a Research Agenda for Informal Logic and Critical Thinking”, Informal Logic , 12(3): 121–143. [ Weinstein 1990 available online ]
  • –––, 2013, Logic, Truth and Inquiry , London: College Publications.
  • Willingham, Daniel T., 2019, “How to Teach Critical Thinking”, Education: Future Frontiers , 1: 1–17. [Available online at https://prod65.education.nsw.gov.au/content/dam/main-education/teaching-and-learning/education-for-a-changing-world/media/documents/How-to-teach-critical-thinking-Willingham.pdf.]
  • Zagzebski, Linda Trinkaus, 1996, Virtues of the Mind: An Inquiry into the Nature of Virtue and the Ethical Foundations of Knowledge , Cambridge: Cambridge University Press. doi:10.1017/CBO9781139174763
How to cite this entry . Preview the PDF version of this entry at the Friends of the SEP Society . Look up topics and thinkers related to this entry at the Internet Philosophy Ontology Project (InPhO). Enhanced bibliography for this entry at PhilPapers , with links to its database.
  • Association for Informal Logic and Critical Thinking (AILACT)
  • Critical Thinking Across the European Higher Education Curricula (CRITHINKEDU)
  • Critical Thinking Definition, Instruction, and Assessment: A Rigorous Approach
  • Critical Thinking Research (RAIL)
  • Foundation for Critical Thinking
  • Insight Assessment
  • Partnership for 21st Century Learning (P21)
  • The Critical Thinking Consortium
  • The Nature of Critical Thinking: An Outline of Critical Thinking Dispositions and Abilities , by Robert H. Ennis

abilities | bias, implicit | children, philosophy for | civic education | decision-making capacity | Dewey, John | dispositions | education, philosophy of | epistemology: virtue | logic: informal

Copyright © 2022 by David Hitchcock < hitchckd @ mcmaster . ca >

  • Accessibility

Support SEP

Mirror sites.

View this site from another server:

  • Info about mirror sites

The Stanford Encyclopedia of Philosophy is copyright © 2024 by The Metaphysics Research Lab , Department of Philosophy, Stanford University

Library of Congress Catalog Data: ISSN 1095-5054

loading

Library Home

Introduction to Logic and Critical Thinking

(10 reviews)

what critical thinking skill is based on logic and reason

Matthew Van Cleave, Lansing Community College

Copyright Year: 2016

Publisher: Matthew J. Van Cleave

Language: English

Formats Available

Conditions of use.

Attribution

Learn more about reviews.

Reviewed by "yusef" Alexander Hayes, Professor, North Shore Community College on 6/9/21

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness. read more

Comprehensiveness rating: 5 see less

Formal and informal reasoning, argument structure, and fallacies are covered comprehensively, meeting the author's goal of both depth and succinctness.

Content Accuracy rating: 5

The book is accurate.

Relevance/Longevity rating: 5

While many modern examples are used, and they are helpful, they are not necessarily needed. The usefulness of logical principles and skills have proved themselves, and this text presents them clearly with many examples.

Clarity rating: 5

It is obvious that the author cares about their subject, audience, and students. The text is comprehensible and interesting.

Consistency rating: 5

The format is easy to understand and is consistent in framing.

Modularity rating: 5

This text would be easy to adapt.

Organization/Structure/Flow rating: 5

The organization is excellent, my one suggestion would be a concluding chapter.

Interface rating: 5

I accessed the PDF version and it would be easy to work with.

Grammatical Errors rating: 5

The writing is excellent.

Cultural Relevance rating: 5

This is not an offensive text.

Reviewed by Susan Rottmann, Part-time Lecturer, University of Southern Maine on 3/2/21

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it... read more

Comprehensiveness rating: 4 see less

I reviewed this book for a course titled "Creative and Critical Inquiry into Modern Life." It won't meet all my needs for that course, but I haven't yet found a book that would. I wanted to review this one because it states in the preface that it fits better for a general critical thinking course than for a true logic course. I'm not sure that I'd agree. I have been using Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," and I think that book is a better introduction to critical thinking for non-philosophy majors. However, the latter is not open source so I will figure out how to get by without it in the future. Overall, the book seems comprehensive if the subject is logic. The index is on the short-side, but fine. However, one issue for me is that there are no page numbers on the table of contents, which is pretty annoying if you want to locate particular sections.

Content Accuracy rating: 4

I didn't find any errors. In general the book uses great examples. However, they are very much based in the American context, not for an international student audience. Some effort to broaden the chosen examples would make the book more widely applicable.

Relevance/Longevity rating: 4

I think the book will remain relevant because of the nature of the material that it addresses, however there will be a need to modify the examples in future editions and as the social and political context changes.

Clarity rating: 3

The text is lucid, but I think it would be difficult for introductory-level students who are not philosophy majors. For example, in Browne and Keeley's "Asking the Right Questions: A Guide to Critical Thinking," the sub-headings are very accessible, such as "Experts cannot rescue us, despite what they say" or "wishful thinking: perhaps the biggest single speed bump on the road to critical thinking." By contrast, Van Cleave's "Introduction to Logic and Critical Thinking" has more subheadings like this: "Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form" or "Propositional logic and the four basic truth functional connectives." If students are prepared very well for the subject, it would work fine, but for students who are newly being introduced to critical thinking, it is rather technical.

It seems to be very consistent in terms of its terminology and framework.

Modularity rating: 4

The book is divided into 4 chapters, each having many sub-chapters. In that sense, it is readily divisible and modular. However, as noted above, there are no page numbers on the table of contents, which would make assigning certain parts rather frustrating. Also, I'm not sure why the book is only four chapter and has so many subheadings (for instance 17 in Chapter 2) and a length of 242 pages. Wouldn't it make more sense to break up the book into shorter chapters? I think this would make it easier to read and to assign in specific blocks to students.

Organization/Structure/Flow rating: 4

The organization of the book is fine overall, although I think adding page numbers to the table of contents and breaking it up into more separate chapters would help it to be more easily navigable.

Interface rating: 4

The book is very simply presented. In my opinion it is actually too simple. There are few boxes or diagrams that highlight and explain important points.

The text seems fine grammatically. I didn't notice any errors.

The book is written with an American audience in mind, but I did not notice culturally insensitive or offensive parts.

Overall, this book is not for my course, but I think it could work well in a philosophy course.

what critical thinking skill is based on logic and reason

Reviewed by Daniel Lee, Assistant Professor of Economics and Leadership, Sweet Briar College on 11/11/19

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument read more

Comprehensiveness rating: 3 see less

This textbook is not particularly comprehensive (4 chapters long), but I view that as a benefit. In fact, I recommend it for use outside of traditional logic classes, but rather interdisciplinary classes that evaluate argument

To the best of my ability, I regard this content as accurate, error-free, and unbiased

The book is broadly relevant and up-to-date, with a few stray temporal references (sydney olympics, particular presidencies). I don't view these time-dated examples as problematic as the logical underpinnings are still there and easily assessed

Clarity rating: 4

My only pushback on clarity is I didn't find the distinction between argument and explanation particularly helpful/useful/easy to follow. However, this experience may have been unique to my class.

To the best of my ability, I regard this content as internally consistent

I found this text quite modular, and was easily able to integrate other texts into my lessons and disregard certain chapters or sub-sections

The book had a logical and consistent structure, but to the extent that there are only 4 chapters, there isn't much scope for alternative approaches here

No problems with the book's interface

The text is grammatically sound

Cultural Relevance rating: 4

Perhaps the text could have been more universal in its approach. While I didn't find the book insensitive per-se, logic can be tricky here because the point is to evaluate meaningful (non-trivial) arguments, but any argument with that sense of gravity can also be traumatic to students (abortion, death penalty, etc)

No additional comments

Reviewed by Lisa N. Thomas-Smith, Graduate Part-time Instructor, CU Boulder on 7/1/19

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text,... read more

The text covers all the relevant technical aspects of introductory logic and critical thinking, and covers them well. A separate glossary would be quite helpful to students. However, the terms are clearly and thoroughly explained within the text, and the index is very thorough.

The content is excellent. The text is thorough and accurate with no errors that I could discern. The terminology and exercises cover the material nicely and without bias.

The text should easily stand the test of time. The exercises are excellent and would be very helpful for students to internalize correct critical thinking practices. Because of the logical arrangement of the text and the many sub-sections, additional material should be very easy to add.

The text is extremely clearly and simply written. I anticipate that a diligent student could learn all of the material in the text with little additional instruction. The examples are relevant and easy to follow.

The text did not confuse terms or use inconsistent terminology, which is very important in a logic text. The discipline often uses multiple terms for the same concept, but this text avoids that trap nicely.

The text is fairly easily divisible. Since there are only four chapters, those chapters include large blocks of information. However, the chapters themselves are very well delineated and could be easily broken up so that parts could be left out or covered in a different order from the text.

The flow of the text is excellent. All of the information is handled solidly in an order that allows the student to build on the information previously covered.

The PDF Table of Contents does not include links or page numbers which would be very helpful for navigation. Other than that, the text was very easy to navigate. All the images, charts, and graphs were very clear

I found no grammatical errors in the text.

Cultural Relevance rating: 3

The text including examples and exercises did not seem to be offensive or insensitive in any specific way. However, the examples included references to black and white people, but few others. Also, the text is very American specific with many examples from and for an American audience. More diversity, especially in the examples, would be appropriate and appreciated.

Reviewed by Leslie Aarons, Associate Professor of Philosophy, CUNY LaGuardia Community College on 5/16/19

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an... read more

This is an excellent introductory (first-year) Logic and Critical Thinking textbook. The book covers the important elementary information, clearly discussing such things as the purpose and basic structure of an argument; the difference between an argument and an explanation; validity; soundness; and the distinctions between an inductive and a deductive argument in accessible terms in the first chapter. It also does a good job introducing and discussing informal fallacies (Chapter 4). The incorporation of opportunities to evaluate real-world arguments is also very effective. Chapter 2 also covers a number of formal methods of evaluating arguments, such as Venn Diagrams and Propositional logic and the four basic truth functional connectives, but to my mind, it is much more thorough in its treatment of Informal Logic and Critical Thinking skills, than it is of formal logic. I also appreciated that Van Cleave’s book includes exercises with answers and an index, but there is no glossary; which I personally do not find detracts from the book's comprehensiveness.

Overall, Van Cleave's book is error-free and unbiased. The language used is accessible and engaging. There were no glaring inaccuracies that I was able to detect.

Van Cleave's Textbook uses relevant, contemporary content that will stand the test of time, at least for the next few years. Although some examples use certain subjects like former President Obama, it does so in a useful manner that inspires the use of critical thinking skills. There are an abundance of examples that inspire students to look at issues from many different political viewpoints, challenging students to practice evaluating arguments, and identifying fallacies. Many of these exercises encourage students to critique issues, and recognize their own inherent reader-biases and challenge their own beliefs--hallmarks of critical thinking.

As mentioned previously, the author has an accessible style that makes the content relatively easy to read and engaging. He also does a suitable job explaining jargon/technical language that is introduced in the textbook.

Van Cleave uses terminology consistently and the chapters flow well. The textbook orients the reader by offering effective introductions to new material, step-by-step explanations of the material, as well as offering clear summaries of each lesson.

This textbook's modularity is really quite good. Its language and structure are not overly convoluted or too-lengthy, making it convenient for individual instructors to adapt the materials to suit their methodological preferences.

The topics in the textbook are presented in a logical and clear fashion. The structure of the chapters are such that it is not necessary to have to follow the chapters in their sequential order, and coverage of material can be adapted to individual instructor's preferences.

The textbook is free of any problematic interface issues. Topics, sections and specific content are accessible and easy to navigate. Overall it is user-friendly.

I did not find any significant grammatical issues with the textbook.

The textbook is not culturally insensitive, making use of a diversity of inclusive examples. Materials are especially effective for first-year critical thinking/logic students.

I intend to adopt Van Cleave's textbook for a Critical Thinking class I am teaching at the Community College level. I believe that it will help me facilitate student-learning, and will be a good resource to build additional classroom activities from the materials it provides.

Reviewed by Jennie Harrop, Chair, Department of Professional Studies, George Fox University on 3/27/18

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters... read more

While the book is admirably comprehensive, its extensive details within a few short chapters may feel overwhelming to students. The author tackles an impressive breadth of concepts in Chapter 1, 2, 3, and 4, which leads to 50-plus-page chapters that are dense with statistical analyses and critical vocabulary. These topics are likely better broached in manageable snippets rather than hefty single chapters.

The ideas addressed in Introduction to Logic and Critical Thinking are accurate but at times notably political. While politics are effectively used to exemplify key concepts, some students may be distracted by distinct political leanings.

The terms and definitions included are relevant, but the examples are specific to the current political, cultural, and social climates, which could make the materials seem dated in a few years without intentional and consistent updates.

While the reasoning is accurate, the author tends to complicate rather than simplify -- perhaps in an effort to cover a spectrum of related concepts. Beginning readers are likely to be overwhelmed and under-encouraged by his approach.

Consistency rating: 3

The four chapters are somewhat consistent in their play of definition, explanation, and example, but the structure of each chapter varies according to the concepts covered. In the third chapter, for example, key ideas are divided into sub-topics numbering from 3.1 to 3.10. In the fourth chapter, the sub-divisions are further divided into sub-sections numbered 4.1.1-4.1.5, 4.2.1-4.2.2, and 4.3.1 to 4.3.6. Readers who are working quickly to master new concepts may find themselves mired in similarly numbered subheadings, longing for a grounded concepts on which to hinge other key principles.

Modularity rating: 3

The book's four chapters make it mostly self-referential. The author would do well to beak this text down into additional subsections, easing readers' accessibility.

The content of the book flows logically and well, but the information needs to be better sub-divided within each larger chapter, easing the student experience.

The book's interface is effective, allowing readers to move from one section to the next with a single click. Additional sub-sections would ease this interplay even further.

Grammatical Errors rating: 4

Some minor errors throughout.

For the most part, the book is culturally neutral, avoiding direct cultural references in an effort to remain relevant.

Reviewed by Yoichi Ishida, Assistant Professor of Philosophy, Ohio University on 2/1/18

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic,... read more

This textbook covers enough topics for a first-year course on logic and critical thinking. Chapter 1 covers the basics as in any standard textbook in this area. Chapter 2 covers propositional logic and categorical logic. In propositional logic, this textbook does not cover suppositional arguments, such as conditional proof and reductio ad absurdum. But other standard argument forms are covered. Chapter 3 covers inductive logic, and here this textbook introduces probability and its relationship with cognitive biases, which are rarely discussed in other textbooks. Chapter 4 introduces common informal fallacies. The answers to all the exercises are given at the end. However, the last set of exercises is in Chapter 3, Section 5. There are no exercises in the rest of the chapter. Chapter 4 has no exercises either. There is index, but no glossary.

The textbook is accurate.

The content of this textbook will not become obsolete soon.

The textbook is written clearly.

The textbook is internally consistent.

The textbook is fairly modular. For example, Chapter 3, together with a few sections from Chapter 1, can be used as a short introduction to inductive logic.

The textbook is well-organized.

There are no interface issues.

I did not find any grammatical errors.

This textbook is relevant to a first semester logic or critical thinking course.

Reviewed by Payal Doctor, Associate Professro, LaGuardia Community College on 2/1/18

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner... read more

This text is a beginner textbook for arguments and propositional logic. It covers the basics of identifying arguments, building arguments, and using basic logic to construct propositions and arguments. It is quite comprehensive for a beginner book, but seems to be a good text for a course that needs a foundation for arguments. There are exercises on creating truth tables and proofs, so it could work as a logic primer in short sessions or with the addition of other course content.

The books is accurate in the information it presents. It does not contain errors and is unbiased. It covers the essential vocabulary clearly and givens ample examples and exercises to ensure the student understands the concepts

The content of the book is up to date and can be easily updated. Some examples are very current for analyzing the argument structure in a speech, but for this sort of text understandable examples are important and the author uses good examples.

The book is clear and easy to read. In particular, this is a good text for community college students who often have difficulty with reading comprehension. The language is straightforward and concepts are well explained.

The book is consistent in terminology, formatting, and examples. It flows well from one topic to the next, but it is also possible to jump around the text without loosing the voice of the text.

The books is broken down into sub units that make it easy to assign short blocks of content at a time. Later in the text, it does refer to a few concepts that appear early in that text, but these are all basic concepts that must be used to create a clear and understandable text. No sections are too long and each section stays on topic and relates the topic to those that have come before when necessary.

The flow of the text is logical and clear. It begins with the basic building blocks of arguments, and practice identifying more and more complex arguments is offered. Each chapter builds up from the previous chapter in introducing propositional logic, truth tables, and logical arguments. A select number of fallacies are presented at the end of the text, but these are related to topics that were presented before, so it makes sense to have these last.

The text is free if interface issues. I used the PDF and it worked fine on various devices without loosing formatting.

1. The book contains no grammatical errors.

The text is culturally sensitive, but examples used are a bit odd and may be objectionable to some students. For instance, President Obama's speech on Syria is used to evaluate an extended argument. This is an excellent example and it is explained well, but some who disagree with Obama's policies may have trouble moving beyond their own politics. However, other examples look at issues from all political viewpoints and ask students to evaluate the argument, fallacy, etc. and work towards looking past their own beliefs. Overall this book does use a variety of examples that most students can understand and evaluate.

My favorite part of this book is that it seems to be written for community college students. My students have trouble understanding readings in the New York Times, so it is nice to see a logic and critical thinking text use real language that students can understand and follow without the constant need of a dictionary.

Reviewed by Rebecca Owen, Adjunct Professor, Writing, Chemeketa Community College on 6/20/17

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current... read more

This textbook is quite thorough--there are conversational explanations of argument structure and logic. I think students will be happy with the conversational style this author employs. Also, there are many examples and exercises using current events, funny scenarios, or other interesting ways to evaluate argument structure and validity. The third section, which deals with logical fallacies, is very clear and comprehensive. My only critique of the material included in the book is that the middle section may be a bit dense and math-oriented for learners who appreciate the more informal, informative style of the first and third section. Also, the book ends rather abruptly--it moves from a description of a logical fallacy to the answers for the exercises earlier in the text.

The content is very reader-friendly, and the author writes with authority and clarity throughout the text. There are a few surface-level typos (Starbuck's instead of Starbucks, etc.). None of these small errors detract from the quality of the content, though.

One thing I really liked about this text was the author's wide variety of examples. To demonstrate different facets of logic, he used examples from current media, movies, literature, and many other concepts that students would recognize from their daily lives. The exercises in this text also included these types of pop-culture references, and I think students will enjoy the familiarity--as well as being able to see the logical structures behind these types of references. I don't think the text will need to be updated to reflect new instances and occurrences; the author did a fine job at picking examples that are relatively timeless. As far as the subject matter itself, I don't think it will become obsolete any time soon.

The author writes in a very conversational, easy-to-read manner. The examples used are quite helpful. The third section on logical fallacies is quite easy to read, follow, and understand. A student in an argument writing class could benefit from this section of the book. The middle section is less clear, though. A student learning about the basics of logic might have a hard time digesting all of the information contained in chapter two. This material might be better in two separate chapters. I think the author loses the balance of a conversational, helpful tone and focuses too heavily on equations.

Consistency rating: 4

Terminology in this book is quite consistent--the key words are highlighted in bold. Chapters 1 and 3 follow a similar organizational pattern, but chapter 2 is where the material becomes more dense and equation-heavy. I also would have liked a closing passage--something to indicate to the reader that we've reached the end of the chapter as well as the book.

I liked the overall structure of this book. If I'm teaching an argumentative writing class, I could easily point the students to the chapters where they can identify and practice identifying fallacies, for instance. The opening chapter is clear in defining the necessary terms, and it gives the students an understanding of the toolbox available to them in assessing and evaluating arguments. Even though I found the middle section to be dense, smaller portions could be assigned.

The author does a fine job connecting each defined term to the next. He provides examples of how each defined term works in a sentence or in an argument, and then he provides practice activities for students to try. The answers for each question are listed in the final pages of the book. The middle section feels like the heaviest part of the whole book--it would take the longest time for a student to digest if assigned the whole chapter. Even though this middle section is a bit heavy, it does fit the overall structure and flow of the book. New material builds on previous chapters and sub-chapters. It ends abruptly--I didn't realize that it had ended, and all of a sudden I found myself in the answer section for those earlier exercises.

The simple layout is quite helpful! There is nothing distracting, image-wise, in this text. The table of contents is clearly arranged, and each topic is easy to find.

Tiny edits could be made (Starbuck's/Starbucks, for one). Otherwise, it is free of distracting grammatical errors.

This text is quite culturally relevant. For instance, there is one example that mentions the rumors of Barack Obama's birthplace as somewhere other than the United States. This example is used to explain how to analyze an argument for validity. The more "sensational" examples (like the Obama one above) are helpful in showing argument structure, and they can also help students see how rumors like this might gain traction--as well as help to show students how to debunk them with their newfound understanding of argument and logic.

The writing style is excellent for the subject matter, especially in the third section explaining logical fallacies. Thank you for the opportunity to read and review this text!

Reviewed by Laurel Panser, Instructor, Riverland Community College on 6/20/17

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as... read more

This is a review of Introduction to Logic and Critical Thinking, an open source book version 1.4 by Matthew Van Cleave. The comparison book used was Patrick J. Hurley’s A Concise Introduction to Logic 12th Edition published by Cengage as well as the 13th edition with the same title. Lori Watson is the second author on the 13th edition.

Competing with Hurley is difficult with respect to comprehensiveness. For example, Van Cleave’s book is comprehensive to the extent that it probably covers at least two-thirds or more of what is dealt with in most introductory, one-semester logic courses. Van Cleave’s chapter 1 provides an overview of argumentation including discerning non-arguments from arguments, premises versus conclusions, deductive from inductive arguments, validity, soundness and more. Much of Van Cleave’s chapter 1 parallel’s Hurley’s chapter 1. Hurley’s chapter 3 regarding informal fallacies is comprehensive while Van Cleave’s chapter 4 on this topic is less extensive. Categorical propositions are a topic in Van Cleave’s chapter 2; Hurley’s chapters 4 and 5 provide more instruction on this, however. Propositional logic is another topic in Van Cleave’s chapter 2; Hurley’s chapters 6 and 7 provide more information on this, though. Van Cleave did discuss messy issues of language meaning briefly in his chapter 1; that is the topic of Hurley’s chapter 2.

Van Cleave’s book includes exercises with answers and an index. A glossary was not included.

Reviews of open source textbooks typically include criteria besides comprehensiveness. These include comments on accuracy of the information, whether the book will become obsolete soon, jargon-free clarity to the extent that is possible, organization, navigation ease, freedom from grammar errors and cultural relevance; Van Cleave’s book is fine in all of these areas. Further criteria for open source books includes modularity and consistency of terminology. Modularity is defined as including blocks of learning material that are easy to assign to students. Hurley’s book has a greater degree of modularity than Van Cleave’s textbook. The prose Van Cleave used is consistent.

Van Cleave’s book will not become obsolete soon.

Van Cleave’s book has accessible prose.

Van Cleave used terminology consistently.

Van Cleave’s book has a reasonable degree of modularity.

Van Cleave’s book is organized. The structure and flow of his book is fine.

Problems with navigation are not present.

Grammar problems were not present.

Van Cleave’s book is culturally relevant.

Van Cleave’s book is appropriate for some first semester logic courses.

Table of Contents

Chapter 1: Reconstructing and analyzing arguments

  • 1.1 What is an argument?
  • 1.2 Identifying arguments
  • 1.3 Arguments vs. explanations
  • 1.4 More complex argument structures
  • 1.5 Using your own paraphrases of premises and conclusions to reconstruct arguments in standard form
  • 1.6 Validity
  • 1.7 Soundness
  • 1.8 Deductive vs. inductive arguments
  • 1.9 Arguments with missing premises
  • 1.10 Assuring, guarding, and discounting
  • 1.11 Evaluative language
  • 1.12 Evaluating a real-life argument

Chapter 2: Formal methods of evaluating arguments

  • 2.1 What is a formal method of evaluation and why do we need them?
  • 2.2 Propositional logic and the four basic truth functional connectives
  • 2.3 Negation and disjunction
  • 2.4 Using parentheses to translate complex sentences
  • 2.5 “Not both” and “neither nor”
  • 2.6 The truth table test of validity
  • 2.7 Conditionals
  • 2.8 “Unless”
  • 2.9 Material equivalence
  • 2.10 Tautologies, contradictions, and contingent statements
  • 2.11 Proofs and the 8 valid forms of inference
  • 2.12 How to construct proofs
  • 2.13 Short review of propositional logic
  • 2.14 Categorical logic
  • 2.15 The Venn test of validity for immediate categorical inferences
  • 2.16 Universal statements and existential commitment
  • 2.17 Venn validity for categorical syllogisms

Chapter 3: Evaluating inductive arguments and probabilistic and statistical fallacies

  • 3.1 Inductive arguments and statistical generalizations
  • 3.2 Inference to the best explanation and the seven explanatory virtues
  • 3.3 Analogical arguments
  • 3.4 Causal arguments
  • 3.5 Probability
  • 3.6 The conjunction fallacy
  • 3.7 The base rate fallacy
  • 3.8 The small numbers fallacy
  • 3.9 Regression to the mean fallacy
  • 3.10 Gambler's fallacy

Chapter 4: Informal fallacies

  • 4.1 Formal vs. informal fallacies
  • 4.1.1 Composition fallacy
  • 4.1.2 Division fallacy
  • 4.1.3 Begging the question fallacy
  • 4.1.4 False dichotomy
  • 4.1.5 Equivocation
  • 4.2 Slippery slope fallacies
  • 4.2.1 Conceptual slippery slope
  • 4.2.2 Causal slippery slope
  • 4.3 Fallacies of relevance
  • 4.3.1 Ad hominem
  • 4.3.2 Straw man
  • 4.3.3 Tu quoque
  • 4.3.4 Genetic
  • 4.3.5 Appeal to consequences
  • 4.3.6 Appeal to authority

Answers to exercises Glossary/Index

Ancillary Material

About the book.

This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a “critical thinking textbook.”

About the Contributors

Matthew Van Cleave ,   PhD, Philosophy, University of Cincinnati, 2007.  VAP at Concordia College (Moorhead), 2008-2012.  Assistant Professor at Lansing Community College, 2012-2016. Professor at Lansing Community College, 2016-

Contribute to this Page

Encyclopedia Britannica

  • History & Society
  • Science & Tech
  • Biographies
  • Animals & Nature
  • Geography & Travel
  • Arts & Culture
  • Games & Quizzes
  • On This Day
  • One Good Fact
  • New Articles
  • Lifestyles & Social Issues
  • Philosophy & Religion
  • Politics, Law & Government
  • World History
  • Health & Medicine
  • Browse Biographies
  • Birds, Reptiles & Other Vertebrates
  • Bugs, Mollusks & Other Invertebrates
  • Environment
  • Fossils & Geologic Time
  • Entertainment & Pop Culture
  • Sports & Recreation
  • Visual Arts
  • Demystified
  • Image Galleries
  • Infographics
  • Top Questions
  • Britannica Kids
  • Saving Earth
  • Space Next 50
  • Student Center
  • What was education like in ancient Athens?
  • How does social class affect education attainment?
  • When did education become compulsory?
  • What are alternative forms of education?
  • Do school vouchers offer students access to better education?

Girl student writing in her notebook in classroom in school.

critical thinking

Our editors will review what you’ve submitted and determine whether to revise the article.

  • Stanford Encyclopedia of Philosophy - Critical Thinking
  • Internet Encyclopedia of Philosophy - Critical Thinking
  • Monash University - Student Academic Success - What is critical thinking?
  • Oklahoma State University Pressbooks - Critical Thinking - Introduction to Critical Thinking
  • University of Louisville - Critical Thinking

critical thinking , in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a disposition toward reflective open inquiry that can be cultivated . The term critical thinking was coined by American philosopher and educator John Dewey in the book How We Think (1910) and was adopted by the progressive education movement as a core instructional goal that offered a dynamic modern alternative to traditional educational methods such as rote memorization.

Critical thinking is characterized by a broad set of related skills usually including the abilities to

  • break down a problem into its constituent parts to reveal its underlying logic and assumptions
  • recognize and account for one’s own biases in judgment and experience
  • collect and assess relevant evidence from either personal observations and experimentation or by gathering external information
  • adjust and reevaluate one’s own thinking in response to what one has learned
  • form a reasoned assessment in order to propose a solution to a problem or a more accurate understanding of the topic at hand

Socrates

Theorists have noted that such skills are only valuable insofar as a person is inclined to use them. Consequently, they emphasize that certain habits of mind are necessary components of critical thinking. This disposition may include curiosity, open-mindedness, self-awareness, empathy , and persistence.

Although there is a generally accepted set of qualities that are associated with critical thinking, scholarly writing about the term has highlighted disagreements over its exact definition and whether and how it differs from related concepts such as problem solving . In addition, some theorists have insisted that critical thinking be regarded and valued as a process and not as a goal-oriented skill set to be used to solve problems. Critical-thinking theory has also been accused of reflecting patriarchal assumptions about knowledge and ways of knowing that are inherently biased against women.

Dewey, who also used the term reflective thinking , connected critical thinking to a tradition of rational inquiry associated with modern science . From the turn of the 20th century, he and others working in the overlapping fields of psychology , philosophy , and educational theory sought to rigorously apply the scientific method to understand and define the process of thinking. They conceived critical thinking to be related to the scientific method but more open, flexible, and self-correcting; instead of a recipe or a series of steps, critical thinking would be a wider set of skills, patterns, and strategies that allow someone to reason through an intellectual topic, constantly reassessing assumptions and potential explanations in order to arrive at a sound judgment and understanding.

In the progressive education movement in the United States , critical thinking was seen as a crucial component of raising citizens in a democratic society. Instead of imparting a particular series of lessons or teaching only canonical subject matter, theorists thought that teachers should train students in how to think. As critical thinkers, such students would be equipped to be productive and engaged citizens who could cooperate and rationally overcome differences inherent in a pluralistic society.

what critical thinking skill is based on logic and reason

Beginning in the 1970s and ’80s, critical thinking as a key outcome of school and university curriculum leapt to the forefront of U.S. education policy. In an atmosphere of renewed Cold War competition and amid reports of declining U.S. test scores, there were growing fears that the quality of education in the United States was falling and that students were unprepared. In response, a concerted effort was made to systematically define curriculum goals and implement standardized testing regimens , and critical-thinking skills were frequently included as a crucially important outcome of a successful education. A notable event in this movement was the release of the 1980 report of the Rockefeller Commission on the Humanities that called for the U.S. Department of Education to include critical thinking on its list of “basic skills.” Three years later the California State University system implemented a policy that required every undergraduate student to complete a course in critical thinking.

Critical thinking continued to be put forward as a central goal of education in the early 21st century. Its ubiquity in the language of education policy and in such guidelines as the Common Core State Standards in the United States generated some criticism that the concept itself was both overused and ill-defined. In addition, an argument was made by teachers, theorists, and others that educators were not being adequately trained to teach critical thinking.

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Working with sources
  • What Is Critical Thinking? | Definition & Examples

What Is Critical Thinking? | Definition & Examples

Published on May 30, 2022 by Eoghan Ryan . Revised on May 31, 2023.

Critical thinking is the ability to effectively analyze information and form a judgment .

To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources .

Critical thinking skills help you to:

  • Identify credible sources
  • Evaluate and respond to arguments
  • Assess alternative viewpoints
  • Test hypotheses against relevant criteria

Table of contents

Why is critical thinking important, critical thinking examples, how to think critically, other interesting articles, frequently asked questions about critical thinking.

Critical thinking is important for making judgments about sources of information and forming your own arguments. It emphasizes a rational, objective, and self-aware approach that can help you to identify credible sources and strengthen your conclusions.

Critical thinking is important in all disciplines and throughout all stages of the research process . The types of evidence used in the sciences and in the humanities may differ, but critical thinking skills are relevant to both.

In academic writing , critical thinking can help you to determine whether a source:

  • Is free from research bias
  • Provides evidence to support its research findings
  • Considers alternative viewpoints

Outside of academia, critical thinking goes hand in hand with information literacy to help you form opinions rationally and engage independently and critically with popular media.

Don't submit your assignments before you do this

The academic proofreading tool has been trained on 1000s of academic texts. Making it the most accurate and reliable proofreading tool for students. Free citation check included.

what critical thinking skill is based on logic and reason

Try for free

Critical thinking can help you to identify reliable sources of information that you can cite in your research paper . It can also guide your own research methods and inform your own arguments.

Outside of academia, critical thinking can help you to be aware of both your own and others’ biases and assumptions.

Academic examples

However, when you compare the findings of the study with other current research, you determine that the results seem improbable. You analyze the paper again, consulting the sources it cites.

You notice that the research was funded by the pharmaceutical company that created the treatment. Because of this, you view its results skeptically and determine that more independent research is necessary to confirm or refute them. Example: Poor critical thinking in an academic context You’re researching a paper on the impact wireless technology has had on developing countries that previously did not have large-scale communications infrastructure. You read an article that seems to confirm your hypothesis: the impact is mainly positive. Rather than evaluating the research methodology, you accept the findings uncritically.

Nonacademic examples

However, you decide to compare this review article with consumer reviews on a different site. You find that these reviews are not as positive. Some customers have had problems installing the alarm, and some have noted that it activates for no apparent reason.

You revisit the original review article. You notice that the words “sponsored content” appear in small print under the article title. Based on this, you conclude that the review is advertising and is therefore not an unbiased source. Example: Poor critical thinking in a nonacademic context You support a candidate in an upcoming election. You visit an online news site affiliated with their political party and read an article that criticizes their opponent. The article claims that the opponent is inexperienced in politics. You accept this without evidence, because it fits your preconceptions about the opponent.

There is no single way to think critically. How you engage with information will depend on the type of source you’re using and the information you need.

However, you can engage with sources in a systematic and critical way by asking certain questions when you encounter information. Like the CRAAP test , these questions focus on the currency , relevance , authority , accuracy , and purpose of a source of information.

When encountering information, ask:

  • Who is the author? Are they an expert in their field?
  • What do they say? Is their argument clear? Can you summarize it?
  • When did they say this? Is the source current?
  • Where is the information published? Is it an academic article? Is it peer-reviewed ?
  • Why did the author publish it? What is their motivation?
  • How do they make their argument? Is it backed up by evidence? Does it rely on opinion, speculation, or appeals to emotion ? Do they address alternative arguments?

Critical thinking also involves being aware of your own biases, not only those of others. When you make an argument or draw your own conclusions, you can ask similar questions about your own writing:

  • Am I only considering evidence that supports my preconceptions?
  • Is my argument expressed clearly and backed up with credible sources?
  • Would I be convinced by this argument coming from someone else?

If you want to know more about ChatGPT, AI tools , citation , and plagiarism , make sure to check out some of our other articles with explanations and examples.

  • ChatGPT vs human editor
  • ChatGPT citations
  • Is ChatGPT trustworthy?
  • Using ChatGPT for your studies
  • What is ChatGPT?
  • Chicago style
  • Paraphrasing

 Plagiarism

  • Types of plagiarism
  • Self-plagiarism
  • Avoiding plagiarism
  • Academic integrity
  • Consequences of plagiarism
  • Common knowledge

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

Critical thinking skills include the ability to:

You can assess information and arguments critically by asking certain questions about the source. You can use the CRAAP test , focusing on the currency , relevance , authority , accuracy , and purpose of a source of information.

Ask questions such as:

  • Who is the author? Are they an expert?
  • How do they make their argument? Is it backed up by evidence?

A credible source should pass the CRAAP test  and follow these guidelines:

  • The information should be up to date and current.
  • The author and publication should be a trusted authority on the subject you are researching.
  • The sources the author cited should be easy to find, clear, and unbiased.
  • For a web source, the URL and layout should signify that it is trustworthy.

Information literacy refers to a broad range of skills, including the ability to find, evaluate, and use sources of information effectively.

Being information literate means that you:

  • Know how to find credible sources
  • Use relevant sources to inform your research
  • Understand what constitutes plagiarism
  • Know how to cite your sources correctly

Confirmation bias is the tendency to search, interpret, and recall information in a way that aligns with our pre-existing values, opinions, or beliefs. It refers to the ability to recollect information best when it amplifies what we already believe. Relatedly, we tend to forget information that contradicts our opinions.

Although selective recall is a component of confirmation bias, it should not be confused with recall bias.

On the other hand, recall bias refers to the differences in the ability between study participants to recall past events when self-reporting is used. This difference in accuracy or completeness of recollection is not related to beliefs or opinions. Rather, recall bias relates to other factors, such as the length of the recall period, age, and the characteristics of the disease under investigation.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

Ryan, E. (2023, May 31). What Is Critical Thinking? | Definition & Examples. Scribbr. Retrieved September 10, 2024, from https://www.scribbr.com/working-with-sources/critical-thinking/

Is this article helpful?

Eoghan Ryan

Eoghan Ryan

Other students also liked, student guide: information literacy | meaning & examples, what are credible sources & how to spot them | examples, applying the craap test & evaluating sources, get unlimited documents corrected.

✔ Free APA citation check included ✔ Unlimited document corrections ✔ Specialized in correcting academic texts

Module Four: Delivery of Demonstration Speeches

Critical thinking & reasoning: logic and the role of arguments.

Critical thinkers tend to exhibit certain traits that are common to them. These traits are summarized in Table 6.1: [1]

Table 6.1 Traits of Critical Thinkers
Critical thinkers are open and receptive to all ideas and arguments, even those with which they may disagree. Critical thinkers reserve judgment on a message until they have examined the claims, logic, reasoning, and evidence used. Critical thinkers are fair-minded and understand that a message is not inherently wrong or flawed if it differs from their own thoughts. Critical thinkers remain open to the possibility of changing their view on an issue when logic and evidence supports doing so.
Critical thinkers are interested in understanding what is happening in a message. Critical thinkers ask questions of the message, breaking it into its individual components and examining each in turn. Critical thinkers dissect these components looking for sound logic and reasoning.
Critical thinkers avoid jumping to conclusions. Critical thinkers take the time to systematically examine a message. Critical thinkers apply accepted criteria or conditions to their analyses.
Critical thinkers are curious by nature. Critical thinkers ask questions of what is going on around them and in a message. Critical thinkers want to know more and take action to learn more.
Critical thinkers are prudent in acting and making judgments. Critical thinkers are sensible in their actions. That is, they don’t just jump on the bandwagon of common thought because it looks good or everyone else is doing it.
Critical thinkers exercise an ethical foundation based in searching for the truth. Critical thinkers understand that even the wisest people may be wrong at times.
Critical thinkers have faith in the power of logic and sound reasoning. Critical thinkers understand that it is in everyone’s best interest to encourage and develop sound logic. More importantly, critical thinkers value the power of letting others draw their own conclusions.

Recall that critical thinking is an active mode of thinking. Instead of just receiving messages and accepting them as is, we consider what they are saying. We ask if messages are well-supported. We determine if their logic is sound or slightly flawed. In other words, we act on the messages before we take action based on them. When we enact critical thinking on a message, we engage a variety of skills including: listening, analysis, evaluation, inference and interpretation or explanation, and self-regulation [2]

Next, we will examine each of these skills and their role in critical thinking in greater detail. As you read through the explanation of and examples for each skill, think about how it works in conjunction with the others. It’s important to note that while our discussion of the skills is presented in a linear manner, in practice our use of each skill is not so straightforward. We may exercise different skills simultaneously or jump forward and backward.

Martha Stewart

“ Martha Stewart ” by nrkbeta.  CC-BY-SA .

Without an open-minded mind, you can never be a great success. ~ Martha Stewart

In order to understand listening, we must first understand the difference between listening and hearing . At its most basic, hearing refers to the physiological process of receiving sounds, while listening refers to the  psychological process of interpreting or making sense of those sounds.

Every minute of every day we are surrounded by hundreds of different noises and sounds. If we were to try to make sense of each different sound we would probably spend our day just doing this. While we may hear all of the noises, we filter out many of them. They pass through our lives without further notice. Certain noises, however, jump to the forefront of our consciousness. As we listen to them, we make sense of these sounds. We do this every day without necessarily thinking about the process. Like many other bodily functions, it happens without our willing it to happen.

Critical thinking requires that we consciously listen to messages. We must focus on what is being said – and not said. We must strive not to be distracted by other outside noises or the internal noise of our own preconceived ideas. For the moment we only need to take in the message.

Listening becomes especially difficult when the message contains highly charged information. Think about what happens when you try to discuss a controversial issue such as abortion. As the other person speaks, you may have every good intention of listening to the entire argument.

However, when the person says something you feel strongly about you start formulating a counter-argument in your head. The end result is that both sides end up talking past each other without ever really listening to what the other says.

Once we have listened to a message, we can begin to analyze it. In practice we often begin analyzing messages while still listening to them. When we analyze something, we consider it in greater detail, separating out the main components of the message. In a sense, we are acting like a surgeon on the message, carving out all of the different elements and laying them out for further consideration and possible action.

Let’s return to Shonda’s persuasive speech to see analysis in action. As part of the needs section of her speech, Shonda makes the following remarks:

Americans today are some of the unhealthiest people on Earth. It seems like not a week goes by without some news story relating how we are the fattest country in the world. In addition to being overweight, we suffer from a number of other health problems. When I was conducting research for my speech, I read somewhere that heart attacks are the number one killer of men and the number two killer of women. Think about that. My uncle had a heart attack and had to be rushed to the hospital. They hooked him up to a bunch of different machines to keep him alive. We all thought he was going to die. He’s ok now, but he has to take a bunch of pills every day and eat a special diet. Plus he had to pay thousands of dollars in medical bills. Wouldn’t you like to know how to prevent this from happening to you?

If we were to analyze this part of Shonda’s speech (see Table 6.2), we could begin by looking at the claims she makes. We could then look at the evidence she presents in support of these claims. Having parsed out the various elements, we are then ready to evaluate them and by extension the message as a whole.

When we evaluate something we continue the process of analysis by assessing the various claims and arguments for validity. One way we evaluate a message is to ask questions about what is being said and who is saying it. The following is a list of typical questions we may ask, along with an evaluation of the ideas in Shonda’s speech.

Is the speaker credible?

Yes. While Shonda may not be an expert per se on the issue of health benefits related to wine, she has made herself a mini-expert through conducting research.

Does the statement ring true or false based on common sense?

It sounds kind of fishy. Four or more glasses of wine in one sitting doesn’t seem right. In fact, it seems like it might be bordering on binge drinking.

Does the logic employed hold up to scrutiny?

Based on the little bit of Shonda’s speech we see here, her logic does seem to be sound. As we will see later on, she actually commits a few fallacies.

What questions or objections are raised by the message?

In addition to the possibility of Shonda’s proposal being binge drinking, it also raises the possibility of creating alcoholism or causing other long term health problems.

How will further information affect the message?

More information will probably contradict her claims. In fact, most medical research in this area contradicts the claim that drinking 4 or more glasses of wine a day is a good thing.

Will further information strengthen or weaken the claims?

Most likely Shonda’s claims will be weakened.

What questions or objections are raised by the claims?

In addition to the objections we’ve already discussed, there is also the problem of the credibility of Shonda’s expert “doctor.”

Table 6.2 Analysis of Shonda’s Speech
Claims Evidence

A wise man proportions his belief to the evidence. ~ David Hume

Inference and Interpretation or Explanation

“Imply” or “Infer”?

For two relatively small words, imply and infer seem to generate an inordinately large amount of confusion. Understanding the difference between the two and knowing when to use the right one is not only a useful skill, but it also makes you sound a lot smarter!

Let’s begin with imply. Imply means to suggest or convey an idea. A speaker or a piece of writing implies things. For example, in Shonda’s speech, she implies it is better to drink more red wine. In other words, she never directly says that we need to drink more red wine, but she clearly hints at it when she suggests that drinking four or more glasses a day will provide us with health benefits.

Now let’s consider infer. Infer means that something in a speaker’s words or a piece of writing helps us to draw a conclusion outside of his/her words. We infer a conclusion. Returning to Shonda’s speech, we can infer she would want us to drink more red wine rather than less. She never comes right out and says this. However, by considering her overall message, we can draw this conclusion.

Another way to think of the difference between imply and infer is: A speaker (or writer for that matter) implies. The audience infers.

Therefore, it would be incorrect to say that Shonda infers we should drink more rather than less wine. She implies this. To help you differentiate between the two, remember that an inference is something that comes from outside the spoken or written text.

The next step in critically examining a message is to interpret or explain the conclusions that we draw from it. At this phase we consider the evidence and the claims together. In effect we are reassembling the components that we parsed out during analysis. We are continuing our evaluation by looking at the evidence, alternatives, and possible conclusions.

Before we draw any inferences or attempt any explanations, we should look at the evidence provided. When we consider evidence we must first determine what, if any, kind of support is provided. Of the evidence we then ask:

  • Is the evidence sound?
  • Does the evidence say what thespeaker says it does?
  • Does contradictory evidenceexist?
  • Is the evidence from a validcredible source?

Seatbelt

Seatbelt by M.Minderhoud, CC-BY-SA .

Even though these are set up as yes or no questions, you’ll probably find in practice that your answers are a bit more complex. For example, let’s say you’re writing a speech on why we should wear our seatbelts at all times while driving. You’ve researched the topic and found solid, credible information setting forth the numerous reasons why wearing a seatbelt can help save your life and decrease the number of injuries experienced during a motor vehicle accident. Certainly, there exists contradictory evidence arguing seat belts can cause more injuries. For example, if you’re in an accident where your car is partially submerged in water, wearing a seatbelt may impede your ability to quickly exit the vehicle. Does the fact that this evidence exists negate your claims? Probably not, but you need to be thorough in evaluating and considering how you use your evidence.

A man who does not think for himself does not think at all. ~ Oscar Wilde

Self-Regulation

The final step in critically examining a message is actually a skill we should exercise throughout the entire process. With self-regulation, we consider our pre-existing thoughts on the subject and any biases we may have. We examine how what we think on an issue may have influenced the way we understand (or think we understand) the message and any conclusions we have drawn. Just as contradictory evidence doesn’t automatically negate our claims or invalidate our arguments, our biases don’t necessarily make our conclusions wrong. The goal of practicing self-regulation is not to disavow or deny our opinions. The goal is to create distance between our opinions and the messages we evaluate.

Man on bus

Man thinking on bus , by IG8. CC-BY .

The Value of Critical Thinking

In public speaking, the value of being a critical thinker cannot be overstressed. Critical thinking helps us to determine the truth or validity of arguments. However, it also helps us to formulate strong arguments for our speeches. Exercising critical thinking at all steps of the speech writing and delivering process can help us avoid situations like Shonda found herself in. Critical thinking is not a magical panacea that will make us super speakers. However, it is another tool that we can add to our speech toolbox.

As we will learn in the following pages, we construct arguments based on logic. Understanding the ways logic can be used and possibly misused is a vital skill. To help stress the importance of it, the Foundation for Critical Thinking has set forth universal standards of reasoning. These standards can be found in Table 6.3.

When the mind is thinking, it is talking to itself. ~ Plato

Table 6.3
Universal Standards of Reasoning
All reasoning has a purpose.
All reasoning is an attempt to figure something out, to settle some question, to solve some problem.
All reasoning is based on assumptions.
All reasoning is done from some point of view.
All reasoning is based on data, information, and evidence.
All reasoning is expressed through, and shaped by, concepts and ideas.
All reasoning contains inferences or interpretations by which we draw conclusions and give meaning to data.
All reasoning leads somewhere or has implications and consequences.

Logic and the Role of Arguments

Billboard that says Sharia Law threatens America.

“Sharia Law Billboard” by Matt57. Public domain.

We use logic every day. Even if we have never formally studied logical reasoning and fallacies, we can often tell when a person’s statement doesn’t sound right. Think about the claims we see in many advertisements today—Buy product X, and you will be beautiful/thin/happy or have the carefree life depicted in the advertisement. With very little critical thought, we know intuitively that simply buying a product will not magically change our lives. Even if we can’t identify the specific fallacy at work in the argument (non causa in this case), we know there is some flaw in the argument.

By studying logic and fallacies we can learn to formulate stronger and more cohesive arguments, avoiding problems like that mentioned above. The study of logic has a long history. We can trace the roots of modern logical study back to Aristotle in ancient Greece. Aristotle’s simple definition of logic as the means by which we come to know anything still provides a concise understanding of logic. [3] Of the classical pillars of a core liberal arts education of logic, grammar, and rhetoric, logic has developed as a fairly independent branch of philosophical studies. We use logic everyday when we construct statements, argue our point of view, and in myriad other ways. Understanding how logic is used will help us communicate more efficiently and effectively.

Defining Arguments

When we think and speak logically, we pull together statements that combine reasoning with evidence to support an assertion, arguments. A logical argument should not be confused with the type of argument you have with your sister or brother or any other person. When you argue with your sibling, you participate in a conflict in which you disagree about something. You may, however, use a logical argument in the midst of the argument with your sibling. Consider this example:

Man and woman arguing

“Man and Woman Arguing” by mzacha. morgueFile .

Brother and sister, Sydney and Harrison are arguing about whose turn it is to clean their bathroom. Harrison tells Sydney she should do it because she is a girl and girls are better at cleaning. Sydney responds that being a girl has nothing to do with whose turn it is. She reminds Harrison that according to their work chart, they are responsible for cleaning the bathroom on alternate weeks. She tells him she cleaned the bathroom last week; therefore, it is his turn this week. Harrison, still unconvinced, refuses to take responsibility for the chore. Sydney then points to the work chart and shows him where it specifically says it is his turn this week. Defeated, Harrison digs out the cleaning supplies.

Throughout their bathroom argument, both Harrison and Sydney use logical arguments to advance their point. You may ask why Sydney is successful and Harrison is not. This is a good question. Let’s critically think about each of their arguments to see why one fails and one succeeds.

Let’s start with Harrison’s argument. We can summarize it into three points:

  • Girls are better at cleaning bathrooms than boys.
  • Sydney is a girl.
  • Therefore, Sydney should clean the bathroom.

Harrison’s argument here is a form of deductive reasoning, specifically a syllogism. We will consider syllogisms in a few minutes. For our purposes here, let’s just focus on why Harrison’s argument fails to persuade Sydney. Assuming for the moment that we agree with Harrison’s first two premises, then it would seem that his argument makes sense. We know that Sydney is a girl, so the second premise is true. This leaves the first premise that girls are better at cleaning bathrooms than boys. This is the exact point where Harrison’s argument goes astray. The only way his entire argument will work is if we agree with the assumption girls are better at cleaning bathrooms than boys.

Let’s now look at Sydney’s argument and why it works. Her argument can be summarized as follows:

1. The bathroom responsibilities alternate weekly according to the work chart.

2. Sydney cleaned the bathroom last week.

3. The chart indicates it is Harrison’s turn to clean the bathroom this week.

4. Therefore, Harrison should clean the bathroom.

Toilet seat

“Decorative toilet seat” by Bartux~commonswikiv. Public domain.

Sydney’s argument here is a form of inductive reasoning. We will look at inductive reasoning in depth below. For now, let’s look at why Sydney’s argument succeeds where Harrison’s fails. Unlike Harrison’s argument, which rests on assumption for its truth claims, Sydney’s argument rests on evidence. We can define evidence as anything used to support the validity of an assertion. Evidence includes: testimony, scientific findings, statistics, physical objects, and many others. Sydney uses two primary pieces of evidence: the work chart and her statement that she cleaned the bathroom last week. Because Harrison has no contradictory evidence, he can’t logically refute Sydney’s assertion and is therefore stuck with scrubbing the toilet.

Defining Deduction

Deductive reasoning refers to an argument in which the truth of its premises guarantees the truth of its conclusions. Think back to Harrison’s argument for Sydney cleaning the bathroom. In order for his final claim to be valid, we must accept the truth of his claims that girls are better at cleaning bathrooms than boys. The key focus in deductive arguments is that it must be impossible for the premises to be true and the conclusion to be false. The classic example is:

All men are mortal. Socrates is a man. Therefore, Socrates is mortal.

We can look at each of these statements individually and see each is true in its own right. It is virtually impossible for the first two propositions to be true and the conclusion to be false. Any argument which fails to meet this standard commits a logical error or fallacy. Even if we might accept the arguments as good and the conclusion as possible, the argument fails as a form of deductive reasoning.

A few observations and much reasoning lead to error; many observations and a little reasoning to truth. ~ Alexis Carrel

Another way to think of deductive reasoning is to think of it as moving from a general premise to a specific premise. The basic line of reasoning looks like this:

Major premise to minor premise to conclusion.

“Deductive Reasoning” CC-BY-NC-ND .

This form of deductive reasoning is called a syllogism. A syllogism need not have only three components to its argument, but it must have at least three. We have Aristotle to thank for identifying the syllogism and making the study of logic much easier. The focus on syllogisms dominated the field of philosophy for thousands of years. In fact, it wasn’t until the early nineteenth century that we began to see the discussion of other types of logic and other forms of logical reasoning.

It is easy to fall prey to missteps in reasoning when we focus on syllogisms and deductive reasoning. Let’s return to Harrison’s argument and see what happens.

Logic: the art of thinking and reasoning in strict accordance with the limitations and incapacities of the human misunderstanding. ~ Ambrose Bierce

Girls are better at cleaning bathrooms. Sydney is a girl. Therefore, Sydney should clean the bathroom.

“Applied Deductive Reasoning” CC-BY-NC-ND .

Considered in this manner, it should be clear how the strength of the conclusion depends upon us accepting as true the first two statements. This need for truth sets up deductive reasoning as a very rigid form of reasoning. If either one of the first two premises isn’t true, then the entire argument fails.

Let’s turn to recent world events for another example.

The United States should invade any countries holding weapons of mass destruction. According to our experts, Iraq has weapons of mass destruction. Therefore, we should invade Iraq.

“US Invasion Deductive Reasoning Example” CC-BY-NC-ND .

In the debates over whether the United States should take military action in Iraq, this was the basic line of reasoning used to justify an invasion. This logic was sufficient for the United States to invade Iraq; however, as we have since learned, this line of reasoning also shows how quickly logic can go bad. We subsequently learned that the “experts” weren’t quite so confident, and their “evidence” wasn’t quite as concrete as originally represented.

Defining Induction

Inductive reasoning is often though of as the opposite of deductive reasoning; however, this approach is not wholly accurate. Inductive reasoning does move from the specific to the general. However, this fact alone does not make it the opposite of deductive reasoning. An argument which fails in its deductive reasoning may still stand inductively.

Unlike deductive reasoning, there is no standard format inductive arguments must take, making them more flexible. We can define an inductive argument as one in which the truth of its propositions lends support to the conclusion. The difference here in deduction is the truth of the propositions establishes with absolute certainty the truth of the conclusion. When we analyze an inductive argument, we do not focus on the truth of its premises. Instead we analyze inductive arguments for their strength or soundness.

Case one, Case two, and Case three in a funnel. They come out to form a conclusion.

“Inductive Reasoning Model” CC-BY-NC-ND .

Another significant difference between deduction and induction is inductive arguments do not have a standard format. Let’s return to Sydney’s argument to see how induction develops in action:

  • Bathroom cleaning responsibilities alternate weekly according to the work chart.
  • Sydney cleaned the bathroom last week.
  • The chart indicates it is Harrison’s turn to clean the bathroom this week.
  • Therefore, Harrison should clean the bathroom.

What Sydney does here is build to her conclusion that Harrison should clean the bathroom. She begins by stating the general house rule of alternate weeks for cleaning. She then adds in evidence before concluding her argument. While her argument is strong, we don’t know if it is true. There could be other factors Sydney has left out. Sydney may have agreed to take Harrison’s week of bathroom cleaning in exchange for him doing another one of her chores. Or there may be some extenuating circumstances preventing Harrison from bathroom cleaning this week.

You should carefully study the Art of Reasoning, as it is what most people are very deficient in, and I know few things more disagreeable than to argue, or even converse with a man who has no idea of inductive and deductive philosophy. ~ William John Wills

Let’s return to the world stage for another example. After the 9/11 attacks on the World Trade Center, we heard variations of the following arguments:

  • The terrorists were Muslim (or Arab or Middle Eastern)
  • The terrorists hated America.
  • Therefore, all Muslims (or Arabs or Middle Easterners) hate America.

Rubble of the World Trade Center.

“1993 Word Trade Center bombing” by Bureau of ATF 1993 Explosives Incident Report. Public domain.

Clearly, we can see the problem in this line of reasoning. Beyond being a scary example of hyperbolic rhetoric, we can all probably think of at least one counter example to disprove the conclusion. However, individual passions and biases caused many otherwise rational people to say these things in the weeks following the attacks. This example also clearly illustrates how easy it is to get tripped up in your use of logic and the importance of practicing self-regulation.

  • Adapted from Facione, P. A. (1990). Critical Thinking: A Statement of Expert Consensus for Purposes of Educational Assessment and Instruction, The Delphi Report (Executive Summary) . Millbrae, CA: California Academic Press. ↵
  • Adapted from Facione, P. A. (1990). ↵
  • Aristotle. (1989). Prior Analytics (Trans. Robin Smith). Cambridge, MA: Hackett Publishing. ↵
  • Image of man and woman arguing. Authored by : mzacha. Provided by : MorgueFile. Located at : http://mrg.bz/ynkIUa . License : All Rights Reserved . License Terms : Free to remix, commercial use, no attribution required. http://www.morguefile.com/license/morguefile
  • Chapter 6 Logic and the Role of Arguments. Authored by : Terri Russ, J.D., Ph.D.. Provided by : Saint Mary's College, Notre Dame, IN. Located at : http://publicspeakingproject.org/psvirtualtext.html . Project : The Public Speaking Project. License : CC BY-NC-ND: Attribution-NonCommercial-NoDerivatives
  • Martha Stewart nrkbeta. Authored by : nrkbeta. Located at : http://commons.wikimedia.org/wiki/File:Martha_Stewart_nrkbeta.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Seat belt BX. Authored by : M.Minderhoud. Located at : http://commons.wikimedia.org/wiki/File:Seat_belt_BX.jpg . License : CC BY-SA: Attribution-ShareAlike
  • Man thinking in a bus. Authored by : IG8. Located at : https://www.flickr.com/photos/ig8/4295549232/ . License : CC BY: Attribution
  • Sharia-Law-Billboard. Authored by : Matt57. Located at : http://commons.wikimedia.org/wiki/File:Sharia-law-Billboard.jpg . License : Public Domain: No Known Copyright
  • Decorative toilet seat. Authored by : Bartux. Located at : http://commons.wikimedia.org/wiki/File:Decorative_toilet_seat.jpg%20 . License : Public Domain: No Known Copyright
  • Image of 1993 World Trade Center bombing. Provided by : Bureau of ATF 1993 Explosives Incident Report. Located at : http://commons.wikimedia.org/wiki/File:WTC_1993_ATF_Commons.jpg . License : Public Domain: No Known Copyright
  • Product overview
  • All features
  • Latest feature release
  • App integrations
  • project icon Project management
  • Project views
  • Custom fields
  • Status updates
  • goal icon Goals and reporting
  • Reporting dashboards
  • asana-intelligence icon Asana AI
  • workflow icon Workflows and automation
  • portfolio icon Resource management
  • Capacity planning
  • Time tracking
  • my-task icon Admin and security
  • Admin console
  • Permissions
  • list icon Personal
  • premium icon Starter
  • briefcase icon Advanced
  • Goal management
  • Organizational planning
  • Project intake
  • Resource planning
  • Product launches
  • View all uses arrow-right icon

what critical thinking skill is based on logic and reason

  • Work management resources Discover best practices, watch webinars, get insights
  • Customer stories See how the world's best organizations drive work innovation with Asana
  • Help Center Get lots of tips, tricks, and advice to get the most from Asana
  • Asana Academy Sign up for interactive courses and webinars to learn Asana
  • Developers Learn more about building apps on the Asana platform
  • Community programs Connect with and learn from Asana customers around the world
  • Events Find out about upcoming events near you
  • Partners Learn more about our partner programs
  • Asana for nonprofits Get more information on our nonprofit discount program, and apply.
  • Project plans
  • Team goals & objectives
  • Team continuity
  • Meeting agenda
  • View all templates arrow-right icon
  • Collaboration |
  • How to build your critical thinking ski ...

How to build your critical thinking skills in 7 steps (with examples)

Julia Martins contributor headshot

Critical thinking is, well, critical. By developing critical thinking skills, you improve your ability to analyze information and come to the best decision possible. In this article, we cover the basics of critical thinking, as well as the seven steps you can use to implement the full critical thinking process.

Critical thinking comes from asking the right questions to come to the best conclusion possible. Strong critical thinkers analyze information from a variety of viewpoints in order to identify the best course of action.

Don’t worry if you don’t think you have strong critical thinking skills. In this article, we’ll help you build a foundation for critical thinking so you can absorb, analyze, and make informed decisions. 

What is critical thinking? 

Critical thinking is the ability to collect and analyze information to come to a conclusion. Being able to think critically is important in virtually every industry and applicable across a wide range of positions. That’s because critical thinking isn’t subject-specific—rather, it’s your ability to parse through information, data, statistics, and other details in order to identify a satisfactory solution. 

Definitions of critical thinking

Various scholars have provided definitions of critical thinking, each emphasizing different aspects of this complex cognitive process:

Michael Scriven , an American philosopher, defines critical thinking as "the intellectually disciplined process of actively and skillfully conceptualizing, applying, analyzing, synthesizing, and/or evaluating information gathered from, or generated by, observation, experience, reflection, reasoning, or communication as a guide to belief and action."

Robert Ennis , professor emeritus at the University of Illinois, describes critical thinking as "reasonable, reflective thinking focused on deciding what to believe or do."

Diane Halpern , a cognitive psychologist and former president of the American Psychological Association, defines it as "the use of cognitive skills or strategies that increase the probability of a desirable outcome."

Decision-making tools for agile businesses

In this ebook, learn how to equip employees to make better decisions—so your business can pivot, adapt, and tackle challenges more effectively than your competition.

Make good choices, fast: How decision-making processes can help businesses stay agile ebook banner image

8 essential critical thinking skills to develop

Critical thinking is essential for success in everyday life, higher education, and professional settings. The handbook "Foundation for Critical Thinking" defines it as a process of conceptualization, analysis, synthesis, and evaluation of information.

In no particular order, here are eight key critical thinking abilities that can help you excel in any situation:

1. Analytical thinking

Analytical thinking involves evaluating data from multiple sources in order to come to the best conclusions. Analytical thinking allows people to reject cognitive biases and strive to gather and analyze intricate subject matter while solving complex problems. Analytical thinkers who thrive at critical thinking can:

Identify patterns and trends in the data

Break down complex issues into manageable components

Recognize cause-and-effect relationships

Evaluate the strength of arguments and evidence

Example: A data analyst breaks down complex sales figures to identify trends and patterns that inform the company's marketing strategy.

2. Open-mindedness

Open-mindedness is the willingness to consider new ideas, arguments, and information without prejudice. This critical thinking skill helps you analyze and process information to come to an unbiased conclusion. Part of the critical thinking process is letting your personal biases go, taking information at face value and coming to a conclusion based on multiple points of view .

Open-minded critical thinkers demonstrate:

Willingness to consider alternative viewpoints

Ability to suspend judgment until sufficient evidence is gathered

Receptiveness to constructive criticism and feedback

Flexibility in updating beliefs based on new information

Example: During a product development meeting, a team leader actively considers unconventional ideas from junior members, leading to an innovative solution.

3. Problem-solving

Effective problem solving is a cornerstone of critical thinking. It requires the ability to identify issues, generate possible solutions, evaluate alternatives, and implement the best course of action. This critical thinking skill is particularly valuable in fields like project management and entrepreneurship.

Key aspects of problem-solving include:

Clearly defining the problem

Gathering relevant information

Brainstorming potential solutions

Evaluating the pros and cons of each option

Implementing and monitoring the chosen solution

Reflecting on the outcome and adjusting as necessary

Example: A high school principal uses problem-solving skills to address declining student engagement by surveying learners, consulting with higher education experts, and implementing a new curriculum that balances academic rigor with practical, real-world applications.

4. Reasoned judgment

Reasoned judgment is a key component of higher order thinking that involves making thoughtful decisions based on logical analysis of evidence and thorough consideration of alternatives. This critical thinking skill is important in both academic and professional settings. Key aspects reasoned judgment include:

Objectively gathering and analyzing information

Evaluating the credibility and relevance of evidence

Considering multiple perspectives before drawing conclusions

Making decisions based on logical inference and sound reasoning

Example: A high school science teacher uses reasoned judgment to design an experiment, carefully observing and analyzing results before drawing conclusions about the hypothesis.

5. Reflective thinking

Reflective thinking is the process of analyzing one's own thought processes, actions, and outcomes to gain deeper understanding and improve future performance. Good critical thinking requires analyzing and synthesizing information to form a coherent understanding of a problem. It's an essential critical thinking skill for continuous learning and improvement.

Key aspects of reflective thinking include:

Critically examining one's own assumptions and cognitive biases

Considering diverse viewpoints and perspectives

Synthesizing information from various experiences and sources

Applying insights to improve future decision-making and actions

Continuously evaluating and adjusting one's thinking processes

Example: A community organizer reflects on the outcomes of a recent public event, considering what worked well and what could be improved for future initiatives.

6. Communication

Strong communication skills help critical thinkers articulate ideas clearly and persuasively. Communication in the workplace is crucial for effective teamwork, leadership, and knowledge dissemination. Key aspects of communication in critical thinking include:

Clearly expressing complex ideas

Active listening and comprehension

Adapting communication styles to different audiences

Constructing and delivering persuasive arguments

Example: A manager effectively explains a new company policy to her team, addressing their concerns and ensuring everyone understands its implications.

7. Research

Critical thinkers with strong research skills gather, evaluate, and synthesize information from various sources of information. This is particularly important in academic settings and in professional fields that require continuous learning. Effective research involves:

Identifying reliable and relevant sources of information

Evaluating the credibility and bias of sources

Synthesizing information from multiple sources

Recognizing gaps in existing knowledge

Example: A journalist verifies information from multiple credible sources before publishing an article on a controversial topic.

8. Decision-making

Effective decision making is the culmination of various critical thinking skills that allow an individual to draw logical conclusions and generalizations. It involves weighing options, considering consequences, and choosing the best course of action. Key aspects of decision-making include:

Defining clear criteria for evaluation

Gathering and analyzing relevant information

Considering short-term and long-term consequences

Managing uncertainty and risk

Balancing logic and intuition

Example: A homeowner weighs the costs, benefits, and long-term implications before deciding to invest in solar panels for their house.

How to develop critical thinking skills in 7 steps

Critical thinking is a skill that you can build by following these seven steps. The seven steps to critical thinking help you ensure you’re approaching a problem from the right angle, considering every alternative, and coming to an unbiased conclusion.

First things first: When to use the 7 step critical thinking process

There’s a lot that goes into the full critical thinking process, and not every decision needs to be this thought out. Sometimes, it’s enough to put aside bias and approach a process logically. In other, more complex cases, the best way to identify the ideal outcome is to go through the entire critical thinking process. 

The seven-step critical thinking process is useful for complex decisions in areas you are less familiar with. Alternatively, the seven critical thinking steps can help you look at a problem you’re familiar with from a different angle, without any bias. 

If you need to make a less complex decision, consider another problem solving strategy instead. Decision matrices are a great way to identify the best option between different choices. Check out our article on 7 steps to creating a decision matrix .

1. Identify the problem or question

Before you put those critical thinking skills to work, you first need to identify the problem you’re solving. This step includes taking a look at the problem from a few different perspectives and asking questions like: 

What’s happening? 

Why is this happening? 

What assumptions am I making? 

At first glance, how do I think we can solve this problem? 

A big part of developing your critical thinking skills is learning how to come to unbiased conclusions. In order to do that, you first need to acknowledge the biases that you currently have. Does someone on your team think they know the answer? Are you making assumptions that aren’t necessarily true? Identifying these details helps you later on in the process. 

2. Gather relevant information

At this point, you likely have a general idea of the problem—but in order to come up with the best solution, you need to dig deeper. 

During the research process, collect information relating to the problem, including data, statistics, historical project information, team input, and more. Make sure you gather information from a variety of sources, especially if those sources go against your personal ideas about what the problem is or how to solve it.

Gathering varied information is essential for your ability to apply the critical thinking process. If you don’t get enough information, your ability to make a final decision will be skewed. Remember that critical thinking is about helping you identify the objective best conclusion. You aren’t going with your gut—you’re doing research to find the best option

3. Analyze and evaluate data

Just as it’s important to gather a variety of information, it is also important to determine how relevant the different information sources are. After all, just because there is data doesn’t mean it’s relevant. 

Once you’ve gathered all of the information, sift through the noise and identify what information is relevant and what information isn’t. Synthesizing all of this information and establishing significance helps you weigh different data sources and come to the best conclusion later on in the critical thinking process. 

To determine data relevance, ask yourself:

How reliable is this information? 

How significant is this information? 

Is this information outdated? Is it specialized in a specific field? 

4. Consider alternative points of view

One of the most useful parts of the critical thinking process is coming to a decision without bias. In order to do so, you need to take a step back from the process and challenge the assumptions you’re making. 

We all have bias—and that isn’t necessarily a bad thing. Unconscious biases (also known as cognitive biases) often serve as mental shortcuts to simplify problem solving and aid decision making. But even when biases aren’t inherently bad, you must be aware of your biases in order to put them aside when necessary. 

Before coming to a solution, ask yourself:

Am I making any assumptions about this information? 

Are there additional variables I haven’t considered? 

Have I evaluated the information from every perspective? 

Are there any viewpoints I missed?

5. Draw logical conclusions

Finally, you’re ready to come to a conclusion. To identify the best solution, draw connections between causes and effects. Use the facts you’ve gathered to evaluate the most objective conclusion. 

Keep in mind that there may be more than one solution. Often, the problems you’re facing are complex and intricate. The critical thinking process doesn’t necessarily lead to a cut-and-dry solution—instead, the process helps you understand the different variables at play so you can make an informed decision. 

6. Develop and communication solutions

Communication is a key skill for critical thinkers. It isn’t enough to think for yourself—you also need to share your conclusion with other project stakeholders. If there are multiple solutions, present them all. There may be a case where you implement one solution, then test to see if it works before implementing another solution. 

This process of communicating and sharing ideas is key in promoting critical thinking abilities within a team or organization. By encouraging open dialogue and collaborative problem-solving, you create an environment that fosters the development of critical thinking skills in others.

7. Reflect and learn from the process

The seven-step critical thinking process yields a result—and you then need to put that solution into place. After you’ve implemented your decision, evaluate whether or not it was effective. Did it solve the initial problem? What lessons—whether positive or negative—can you learn from this experience to improve your critical thinking for next time? 

By engaging in this metacognitive reflective thinking process, you're essentially teaching critical thinking skills to yourself, refining your methodology with each iteration. This reflective practice is fundamental in developing a more robust and adaptable approach to problem-solving.

Depending on how your team shares information, consider documenting lessons learned in a central source of truth. That way, team members that are making similar or related decisions in the future can understand why you made the decision you made and what the outcome was.

Critical thinking examples in the workplace

Imagine you work in user experience design (UX). Your team is focused on pricing and packaging and ensuring customers have a clear understanding of the different services your company offers. Here’s how to apply the critical thinking process in the workplace in seven steps: 

Step 1: Start by identifying the problem

Your current pricing page isn’t performing as well as you want. You’ve heard from customers that your services aren’t clear, and that the page doesn’t answer the questions they have. This page is really important for your company, since it’s where your customers sign up for your service. You and your team have a few theories about why your current page isn’t performing well, but you decide to apply the critical thinking process to ensure you come to the best decision for the page. 

Gather information about how the problem started

Part of identifying the problem includes understanding how the problem started. The pricing and packaging page is important—so when your team initially designed the page, they certainly put a lot of thought into it. Before you begin researching how to improve the page, ask yourself: 

Why did you design the pricing page the way you did? 

Which stakeholders need to be involved in the decision making process? 

Where are users getting stuck on the page?

Are any features currently working?

Step 2: Then gather information and research

In addition to understanding the history of the pricing and packaging page, it’s important to understand what works well. Part of this research means taking a look at what your competitor’s pricing pages look like. 

Ask yourself: 

How have our competitors set up their pricing pages?

Are there any pricing page best practices? 

How does color, positioning, and animation impact navigation? 

Are there any standard page layouts customers expect to see? 

Step 3: Organize and analyze information

You’ve gathered all of the information you need—now you need to organize and analyze it. What trends, if any, are you noticing? Is there any particularly relevant or important information that you have to consider? 

Step 4: Consider alternative viewpoints to reduce bias

In the case of critical thinking, it’s important to address and set bias aside as much as possible. Ask yourself: 

Is there anything I’m missing? 

Have I connected with the right stakeholders? 

Are there any other viewpoints I should consider? 

Step 5: Determine the most logical solution for your team

You now have all of the information you need to design the best pricing page. Depending on the complexity of the design, you may want to design a few options to present to a small group of customers or A/B test on the live website.

Step 6: Communicate your solution to stakeholders

Critical thinking skills can help you in every element of your life, but in the workplace, you must also involve key project stakeholders . Stakeholders help you determine next steps, like whether you’ll A/B test the page first. Depending on the complexity of the issue, consider hosting a meeting or sharing a status report to get everyone on the same page. 

Step 7: Reflect on the results

No process is complete without evaluating the results. Once the new page has been live for some time, evaluate whether it did better than the previous page. What worked? What didn’t? This also helps you make better critical decisions later on.

Tools and techniques to improve critical thinking skills

Understanding how to improve critical thinking skills has become a cornerstone of personal and professional growth in the 21st century. Recognizing the importance of critical thinking, experts across various disciplines have contributed valuable insights and methodologies. Here are some notable contributions from experts and institutions in the field:

Mind mapping: A visual approach to critical thinking skills

Mind mapping is a visual technique that helps organize and structure information. It's particularly useful for synthesizing complex ideas and identifying connections between different concepts. The benefits of mind mapping include:

Enhancing creativity by encouraging non-linear thinking

Improving memory and retention of information

Facilitating brainstorming and idea generation

Providing a clear overview of complex topics

To create a mind map:

Start with a central idea or concept.

Branch out with related sub topics or ideas.

Use colors, symbols, and images to enhance visual appeal and memorability.

Draw connections between related ideas across different branches.

Mind mapping can be particularly effective in project planning , content creation, and studying complex subjects.

The Socratic Method: Deepening critical thinking skills

The Socratic Method, named after the ancient Greek philosopher Socrates, involves asking probing questions to stimulate critical thinking and illuminate ideas. This technique is widely used in higher education to teach critical thinking. Key aspects of the Socratic Method include:

Asking open-ended questions that encourage deeper reflection

Challenging assumptions and preconceived notions

Exploring the implications and consequences of ideas

Fostering intellectual curiosity and continuous inquiry

The Socratic Method can be applied in various settings:

In education, to encourage students to think deeply about subject matter

In business, it is important to challenge team members to consider multiple points of view.

In personal development, to examine one's own beliefs and decisions

Example: A high school teacher might use the Socratic Method to guide students through a complex ethical dilemma, asking questions like "What principles are at stake here?" and "How might this decision affect different stakeholders?"

SWOT analysis: Comprehensive critical thinking skills

SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis is a strategic planning tool that can be applied to critical thinking. It helps in evaluating situations from multiple angles, promoting a more thorough understanding of complex issues. The components of SWOT analysis are:

Strengths: internal positive attributes or assets

Weaknesses: internal negative attributes or limitations

Opportunities: External factors that could be beneficial

Threats: External factors that could be harmful

To conduct a SWOT analysis:

Clearly define the subject of analysis (e.g., a project, organization, or decision).

Brainstorm and list items for each category.

Analyze the interactions between different factors.

Use the analysis to inform strategy or decision-making.

Example: A startup might use SWOT analysis to evaluate its position before seeking investment, identifying its innovative technology as a strength, limited capital as a weakness, growing market demand as an opportunity, and established competitors as a threat.

Critical thinking resources

The Foundation for Critical Thinking : Based in California, this organization offers a wide range of resources, including books, articles, and workshops on critical thinking.

The National Council for Excellence in Critical Thinking : This council provides guidelines and standards for critical thinking instruction and assessment.

University of Louisville : Their Critical Thinking Initiative offers various resources and tools that teach people how to develop critical thinking skills.

The New York Times Learning Network provides lesson plans and activities to help develop critical thinking skills through current events and news analysis.

Critical thinking frameworks and tools

Paul-Elder Critical Thinking Framework : Developed by Dr. Richard Paul and Dr. Linda Elder, this framework provides a comprehensive approach to developing critical thinking skills.

Bloom's Taxonomy : While not exclusively for critical thinking, this classification system is widely used in education to promote higher-order thinking skills.

The California Critical Thinking Disposition Inventory (CCTDI) : This assessment tool measures the disposition to engage in problems and make decisions using critical thinking.

The Ennis-Weir Critical Thinking Essay Test : Developed by Robert Ennis, this test assesses a person's ability to appraise an argument and to formulate a written argument.

By incorporating these tools and techniques into regular practice, individuals can learn how to improve critical thinking skills, which leads to more effective problem-solving, decision-making, and overall cognitive performance.

The power of critical thinking skills

Critical thinking skills take time to build, but with effort and patience you can apply an unbiased, analytical mind to any situation. Critical thinking makes up one of many soft skills that makes you an effective team member, manager, and worker. If you’re looking to hone your skills further, read our article on the 25 project management skills you need to succeed .

FAQ: Critical thinking skills

What is being a critical thinker?

Being a critical thinker means possessing strong critical thinking skills that allow you to analyze information objectively and make reasoned judgments. It involves developing analytical skills and the capacity for critical thought. A critical thinker questions assumptions, considers multiple perspectives, and bases decisions on evidence rather than emotions or biases.

What are the 5 C's of critical thinking?

The 5 C's of critical thinking are the core skill sets that make you a better critical thinker:

Curiosity: Asking questions and seeking new information

Creativity: Generating innovative solutions and ideas

Clarity: Expressing thoughts and ideas clearly and precisely

Consistency: Maintaining logical coherence in arguments and reasoning

Commitment: Dedicating oneself to ongoing learning and improvement

These skills directly improve critical thinking and strengthen overall cognitive abilities. Understanding and practicing these 5 C's is a fundamental aspect of how to develop critical thinking skills effectively.

How do you demonstrate critical thinking?

Demonstrating critical thinking involves applying your skill set in various situations. This includes analyzing problems, evaluating information sources, considering multiple perspectives, and using evidence-based reasoning. Many employers highlight these qualities in job descriptions, as they value employees who can apply critical thought to workplace challenges.

What is a real-life example of critical thinking?

A real-life critical thinking example could be making a major purchase decision, such as buying a car. Here's how you might apply critical thinking skills:

Research: Gather information about different car models, prices, and features

Analysis: Compare and contrast options based on your needs and budget

Evaluation: Assess the reliability of information sources (e.g., consumer reports, user reviews)

Questioning: Ask car dealers probing questions about warranties, maintenance costs, and resale value

Consideration of alternatives: Explore options like leasing or public transportation

Decision-making: Weigh pros and cons to make an informed choice

Reflection: After the purchase, evaluate your decision-making process for future improvement

This critical thinking example demonstrates how critical thought can be applied to everyday situations.

Related resources

what critical thinking skill is based on logic and reason

How to streamline compliance management software with Asana

what critical thinking skill is based on logic and reason

10 tips to improve nonverbal communication

what critical thinking skill is based on logic and reason

Scaling clinical trial management software with PM solutions

what critical thinking skill is based on logic and reason

4 ways to establish roles and responsibilities for team success

Daring Leadership Institute: a groundbreaking partnership that amplifies Brené Brown's empirically based, courage-building curriculum with BetterUp’s human transformation platform.

Brené Brown and Alexi Robichaux on Stage at Uplift

What is Coaching?

Types of Coaching

Discover your perfect match : Take our 5-minute assessment and let us pair you with one of our top Coaches tailored just for you.

Find your coach

BetterUp coaching session happening

We're on a mission to help everyone live with clarity, purpose, and passion.

Join us and create impactful change.

Read the buzz about BetterUp.

Meet the leadership that's passionate about empowering your workforce.

Find your Coach

For Business

For Individuals

Request a demo

How to develop critical thinking skills

man-thinking-while-holding-pen-and-looking-at-computer-how-to-develop-critical-thinking-skills

Jump to section

What are critical thinking skills?

How to develop critical thinking skills: 12 tips, how to practice critical thinking skills at work, become your own best critic.

A client requests a tight deadline on an intense project. Your childcare provider calls in sick on a day full of meetings. Payment from a contract gig is a month behind. 

Your day-to-day will always have challenges, big and small. And no matter the size and urgency, they all ask you to use critical thinking to analyze the situation and arrive at the right solution. 

Critical thinking includes a wide set of soft skills that encourage continuous learning, resilience , and self-reflection. The more you add to your professional toolbelt, the more equipped you’ll be to tackle whatever challenge presents itself. Here’s how to develop critical thinking, with examples explaining how to use it.

Critical thinking skills are the skills you use to analyze information, imagine scenarios holistically, and create rational solutions. It’s a type of emotional intelligence that stimulates effective problem-solving and decision-making . 

When you fine-tune your critical thinking skills, you seek beyond face-value observations and knee-jerk reactions. Instead, you harvest deeper insights and string together ideas and concepts in logical, sometimes out-of-the-box , ways. 

Imagine a team working on a marketing strategy for a new set of services. That team might use critical thinking to balance goals and key performance indicators , like new customer acquisition costs, average monthly sales, and net profit margins. They understand the connections between overlapping factors to build a strategy that stays within budget and attracts new sales. 

Looking for ways to improve critical thinking skills? Start by brushing up on the following soft skills that fall under this umbrella: 

  • Analytical thinking: Approaching problems with an analytical eye includes breaking down complex issues into small chunks and examining their significance. An example could be organizing customer feedback to identify trends and improve your product offerings. 
  • Open-mindedness: Push past cognitive biases and be receptive to different points of view and constructive feedback . Managers and team members who keep an open mind position themselves to hear new ideas that foster innovation . 
  • Creative thinking: With creative thinking , you can develop several ideas to address a single problem, like brainstorming more efficient workflow best practices to boost productivity and employee morale . 
  • Self-reflection: Self-reflection lets you examine your thinking and assumptions to stimulate healthier collaboration and thought processes. Maybe a bad first impression created a negative anchoring bias with a new coworker. Reflecting on your own behavior stirs up empathy and improves the relationship. 
  • Evaluation: With evaluation skills, you tackle the pros and cons of a situation based on logic rather than emotion. When prioritizing tasks , you might be tempted to do the fun or easy ones first, but evaluating their urgency and importance can help you make better decisions. 

There’s no magic method to change your thinking processes. Improvement happens with small, intentional changes to your everyday habits until a more critical approach to thinking is automatic. 

Here are 12 tips for building stronger self-awareness and learning how to improve critical thinking: 

1. Be cautious

There’s nothing wrong with a little bit of skepticism. One of the core principles of critical thinking is asking questions and dissecting the available information. You might surprise yourself at what you find when you stop to think before taking action. 

Before making a decision, use evidence, logic, and deductive reasoning to support your own opinions or challenge ideas. It helps you and your team avoid falling prey to bad information or resistance to change .

2. Ask open-ended questions

“Yes” or “no” questions invite agreement rather than reflection. Instead, ask open-ended questions that force you to engage in analysis and rumination. Digging deeper can help you identify potential biases, uncover assumptions, and arrive at new hypotheses and possible solutions. 

3. Do your research

No matter your proficiency, you can always learn more. Turning to different points of view and information is a great way to develop a comprehensive understanding of a topic and make informed decisions. You’ll prioritize reliable information rather than fall into emotional or automatic decision-making. 

close-up-of-mans-hands-opening-a-dictionary-with-notebook-on-the-side-how-to-develop-critical-thinking-skills

4. Consider several opinions

You might spend so much time on your work that it’s easy to get stuck in your own perspective, especially if you work independently on a remote team . Make an effort to reach out to colleagues to hear different ideas and thought patterns. Their input might surprise you.

If or when you disagree, remember that you and your team share a common goal. Divergent opinions are constructive, so shift the focus to finding solutions rather than defending disagreements. 

5. Learn to be quiet

Active listening is the intentional practice of concentrating on a conversation partner instead of your own thoughts. It’s about paying attention to detail and letting people know you value their opinions, which can open your mind to new perspectives and thought processes.

If you’re brainstorming with your team or having a 1:1 with a coworker , listen, ask clarifying questions, and work to understand other peoples’ viewpoints. Listening to your team will help you find fallacies in arguments to improve possible solutions.

6. Schedule reflection

Whether waking up at 5 am or using a procrastination hack, scheduling time to think puts you in a growth mindset . Your mind has natural cognitive biases to help you simplify decision-making, but squashing them is key to thinking critically and finding new solutions besides the ones you might gravitate toward. Creating time and calm space in your day gives you the chance to step back and visualize the biases that impact your decision-making. 

7. Cultivate curiosity

With so many demands and job responsibilities, it’s easy to seek solace in routine. But getting out of your comfort zone helps spark critical thinking and find more solutions than you usually might.

If curiosity doesn’t come naturally to you, cultivate a thirst for knowledge by reskilling and upskilling . Not only will you add a new skill to your resume , but expanding the limits of your professional knowledge might motivate you to ask more questions. 

You don’t have to develop critical thinking skills exclusively in the office. Whether on your break or finding a hobby to do after work, playing strategic games or filling out crosswords can prime your brain for problem-solving. 

woman-solving-puzzle-at-home-how-to-develop-critical-thinking-skills

9. Write it down

Recording your thoughts with pen and paper can lead to stronger brain activity than typing them out on a keyboard. If you’re stuck and want to think more critically about a problem, writing your ideas can help you process information more deeply.

The act of recording ideas on paper can also improve your memory . Ideas are more likely to linger in the background of your mind, leading to deeper thinking that informs your decision-making process. 

10. Speak up

Take opportunities to share your opinion, even if it intimidates you. Whether at a networking event with new people or a meeting with close colleagues, try to engage with people who challenge or help you develop your ideas. Having conversations that force you to support your position encourages you to refine your argument and think critically. 

11. Stay humble

Ideas and concepts aren’t the same as real-life actions. There may be such a thing as negative outcomes, but there’s no such thing as a bad idea. At the brainstorming stage , don’t be afraid to make mistakes.

Sometimes the best solutions come from off-the-wall, unorthodox decisions. Sit in your creativity , let ideas flow, and don’t be afraid to share them with your colleagues. Putting yourself in a creative mindset helps you see situations from new perspectives and arrive at innovative conclusions. 

12. Embrace discomfort

Get comfortable feeling uncomfortable . It isn’t easy when others challenge your ideas, but sometimes, it’s the only way to see new perspectives and think critically.

By willingly stepping into unfamiliar territory, you foster the resilience and flexibility you need to become a better thinker. You’ll learn how to pick yourself up from failure and approach problems from fresh angles. 

man-looking-down-to-something-while-thinking-how-to-develop-critical-thinking-skills

Thinking critically is easier said than done. To help you understand its impact (and how to use it), here are two scenarios that require critical thinking skills and provide teachable moments. 

Scenario #1: Unexpected delays and budget

Imagine your team is working on producing an event. Unexpectedly, a vendor explains they’ll be a week behind on delivering materials. Then another vendor sends a quote that’s more than you can afford. Unless you develop a creative solution, the team will have to push back deadlines and go over budget, potentially costing the client’s trust. 

Here’s how you could approach the situation with creative thinking:

  • Analyze the situation holistically: Determine how the delayed materials and over-budget quote will impact the rest of your timeline and financial resources . That way, you can identify whether you need to build an entirely new plan with new vendors, or if it’s worth it to readjust time and resources. 
  • Identify your alternative options: With careful assessment, your team decides that another vendor can’t provide the same materials in a quicker time frame. You’ll need to rearrange assignment schedules to complete everything on time. 
  • Collaborate and adapt: Your team has an emergency meeting to rearrange your project schedule. You write down each deliverable and determine which ones you can and can’t complete by the deadline. To compensate for lost time, you rearrange your task schedule to complete everything that doesn’t need the delayed materials first, then advance as far as you can on the tasks that do. 
  • Check different resources: In the meantime, you scour through your contact sheet to find alternative vendors that fit your budget. Accounting helps by providing old invoices to determine which vendors have quoted less for previous jobs. After pulling all your sources, you find a vendor that fits your budget. 
  • Maintain open communication: You create a special Slack channel to keep everyone up to date on changes, challenges, and additional delays. Keeping an open line encourages transparency on the team’s progress and boosts everyone’s confidence. 

coworkers-at-meeting-looking-together-the-screen-how-to-develop-critical-thinking-skills

Scenario #2: Differing opinions 

A conflict arises between two team members on the best approach for a new strategy for a gaming app. One believes that small tweaks to the current content are necessary to maintain user engagement and stay within budget. The other believes a bold revamp is needed to encourage new followers and stronger sales revenue. 

Here’s how critical thinking could help this conflict:

  • Listen actively: Give both team members the opportunity to present their ideas free of interruption. Encourage the entire team to ask open-ended questions to more fully understand and develop each argument. 
  • Flex your analytical skills: After learning more about both ideas, everyone should objectively assess the benefits and drawbacks of each approach. Analyze each idea's risk, merits, and feasibility based on available data and the app’s goals and objectives. 
  • Identify common ground: The team discusses similarities between each approach and brainstorms ways to integrate both idea s, like making small but eye-catching modifications to existing content or using the same visual design in new media formats. 
  • Test new strategy: To test out the potential of a bolder strategy, the team decides to A/B test both approaches. You create a set of criteria to evenly distribute users by different demographics to analyze engagement, revenue, and customer turnover. 
  • Monitor and adapt: After implementing the A/B test, the team closely monitors the results of each strategy. You regroup and optimize the changes that provide stronger results after the testing. That way, all team members understand why you’re making the changes you decide to make.

You can’t think your problems away. But you can equip yourself with skills that help you move through your biggest challenges and find innovative solutions. Learning how to develop critical thinking is the start of honing an adaptable growth mindset. 

Now that you have resources to increase critical thinking skills in your professional development, you can identify whether you embrace change or routine, are open or resistant to feedback, or turn to research or emotion will build self-awareness. From there, tweak and incorporate techniques to be a critical thinker when life presents you with a problem.

Understand Yourself Better:

Big 5 Personality Test

Elizabeth Perry, ACC

Elizabeth Perry is a Coach Community Manager at BetterUp. She uses strategic engagement strategies to cultivate a learning community across a global network of Coaches through in-person and virtual experiences, technology-enabled platforms, and strategic coaching industry partnerships. With over 3 years of coaching experience and a certification in transformative leadership and life coaching from Sofia University, Elizabeth leverages transpersonal psychology expertise to help coaches and clients gain awareness of their behavioral and thought patterns, discover their purpose and passions, and elevate their potential. She is a lifelong student of psychology, personal growth, and human potential as well as an ICF-certified ACC transpersonal life and leadership Coach.

How divergent thinking can drive your creativity

What’s convergent thinking how to be a better problem-solver, 8 creative solutions to your most challenging problems, critical thinking is the one skillset you can't afford not to master, can dreams help you solve problems 6 ways to try, what is lateral thinking 7 techniques to encourage creative ideas, how emotions affect learning: the impact of emotions, 17 memorization techniques to sharpen your memory & recall, how different learning styles make a difference at work, betterup named a 2019 “cool vendor” in human capital management: enhancing employee experience by gartnerup your game: a new model for leadership, 7 critical teamwork skills and how to develop them, what is creative thinking and how can i improve, 6 big picture thinking strategies that you'll actually use, what are analytical skills examples and how to level up, stay connected with betterup, get our newsletter, event invites, plus product insights and research..

3100 E 5th Street, Suite 350 Austin, TX 78702

  • Platform overview
  • Integrations
  • Powered by AI
  • BetterUp Lead™
  • BetterUp Manage™
  • BetterUp Care®
  • Sales Performance
  • Diversity & Inclusion
  • Case studies
  • ROI of BetterUp
  • What is coaching?
  • About Coaching
  • Find your Coach
  • Career Coaching
  • Communication Coaching
  • Personal Coaching
  • News and Press
  • Leadership Team
  • Become a BetterUp Coach
  • BetterUp Briefing
  • Center for Purpose & Performance
  • Leadership Training
  • Business Coaching
  • Contact Support
  • Contact Sales
  • Privacy Policy
  • Acceptable Use Policy
  • Trust & Security
  • Cookie Preferences

Logo for College of DuPage Digital Press

Want to create or adapt books like this? Learn more about how Pressbooks supports open publishing practices.

7 Module 7: Thinking, Reasoning, and Problem-Solving

This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure out the solution to many problems, because you feel capable of using logic to argue a point, because you can evaluate whether the things you read and hear make sense—you do not need any special training in thinking. But this, of course, is one of the key barriers to helping people think better. If you do not believe that there is anything wrong, why try to fix it?

The human brain is indeed a remarkable thinking machine, capable of amazing, complex, creative, logical thoughts. Why, then, are we telling you that you need to learn how to think? Mainly because one major lesson from cognitive psychology is that these capabilities of the human brain are relatively infrequently realized. Many psychologists believe that people are essentially “cognitive misers.” It is not that we are lazy, but that we have a tendency to expend the least amount of mental effort necessary. Although you may not realize it, it actually takes a great deal of energy to think. Careful, deliberative reasoning and critical thinking are very difficult. Because we seem to be successful without going to the trouble of using these skills well, it feels unnecessary to develop them. As you shall see, however, there are many pitfalls in the cognitive processes described in this module. When people do not devote extra effort to learning and improving reasoning, problem solving, and critical thinking skills, they make many errors.

As is true for memory, if you develop the cognitive skills presented in this module, you will be more successful in school. It is important that you realize, however, that these skills will help you far beyond school, even more so than a good memory will. Although it is somewhat useful to have a good memory, ten years from now no potential employer will care how many questions you got right on multiple choice exams during college. All of them will, however, recognize whether you are a logical, analytical, critical thinker. With these thinking skills, you will be an effective, persuasive communicator and an excellent problem solver.

The module begins by describing different kinds of thought and knowledge, especially conceptual knowledge and critical thinking. An understanding of these differences will be valuable as you progress through school and encounter different assignments that require you to tap into different kinds of knowledge. The second section covers deductive and inductive reasoning, which are processes we use to construct and evaluate strong arguments. They are essential skills to have whenever you are trying to persuade someone (including yourself) of some point, or to respond to someone’s efforts to persuade you. The module ends with a section about problem solving. A solid understanding of the key processes involved in problem solving will help you to handle many daily challenges.

7.1. Different kinds of thought

7.2. Reasoning and Judgment

7.3. Problem Solving

READING WITH PURPOSE

Remember and understand.

By reading and studying Module 7, you should be able to remember and describe:

  • Concepts and inferences (7.1)
  • Procedural knowledge (7.1)
  • Metacognition (7.1)
  • Characteristics of critical thinking:  skepticism; identify biases, distortions, omissions, and assumptions; reasoning and problem solving skills  (7.1)
  • Reasoning:  deductive reasoning, deductively valid argument, inductive reasoning, inductively strong argument, availability heuristic, representativeness heuristic  (7.2)
  • Fixation:  functional fixedness, mental set  (7.3)
  • Algorithms, heuristics, and the role of confirmation bias (7.3)
  • Effective problem solving sequence (7.3)

By reading and thinking about how the concepts in Module 6 apply to real life, you should be able to:

  • Identify which type of knowledge a piece of information is (7.1)
  • Recognize examples of deductive and inductive reasoning (7.2)
  • Recognize judgments that have probably been influenced by the availability heuristic (7.2)
  • Recognize examples of problem solving heuristics and algorithms (7.3)

Analyze, Evaluate, and Create

By reading and thinking about Module 6, participating in classroom activities, and completing out-of-class assignments, you should be able to:

  • Use the principles of critical thinking to evaluate information (7.1)
  • Explain whether examples of reasoning arguments are deductively valid or inductively strong (7.2)
  • Outline how you could try to solve a problem from your life using the effective problem solving sequence (7.3)

7.1. Different kinds of thought and knowledge

  • Take a few minutes to write down everything that you know about dogs.
  • Do you believe that:
  • Psychic ability exists?
  • Hypnosis is an altered state of consciousness?
  • Magnet therapy is effective for relieving pain?
  • Aerobic exercise is an effective treatment for depression?
  • UFO’s from outer space have visited earth?

On what do you base your belief or disbelief for the questions above?

Of course, we all know what is meant by the words  think  and  knowledge . You probably also realize that they are not unitary concepts; there are different kinds of thought and knowledge. In this section, let us look at some of these differences. If you are familiar with these different kinds of thought and pay attention to them in your classes, it will help you to focus on the right goals, learn more effectively, and succeed in school. Different assignments and requirements in school call on you to use different kinds of knowledge or thought, so it will be very helpful for you to learn to recognize them (Anderson, et al. 2001).

Factual and conceptual knowledge

Module 5 introduced the idea of declarative memory, which is composed of facts and episodes. If you have ever played a trivia game or watched Jeopardy on TV, you realize that the human brain is able to hold an extraordinary number of facts. Likewise, you realize that each of us has an enormous store of episodes, essentially facts about events that happened in our own lives. It may be difficult to keep that in mind when we are struggling to retrieve one of those facts while taking an exam, however. Part of the problem is that, in contradiction to the advice from Module 5, many students continue to try to memorize course material as a series of unrelated facts (picture a history student simply trying to memorize history as a set of unrelated dates without any coherent story tying them together). Facts in the real world are not random and unorganized, however. It is the way that they are organized that constitutes a second key kind of knowledge, conceptual.

Concepts are nothing more than our mental representations of categories of things in the world. For example, think about dogs. When you do this, you might remember specific facts about dogs, such as they have fur and they bark. You may also recall dogs that you have encountered and picture them in your mind. All of this information (and more) makes up your concept of dog. You can have concepts of simple categories (e.g., triangle), complex categories (e.g., small dogs that sleep all day, eat out of the garbage, and bark at leaves), kinds of people (e.g., psychology professors), events (e.g., birthday parties), and abstract ideas (e.g., justice). Gregory Murphy (2002) refers to concepts as the “glue that holds our mental life together” (p. 1). Very simply, summarizing the world by using concepts is one of the most important cognitive tasks that we do. Our conceptual knowledge  is  our knowledge about the world. Individual concepts are related to each other to form a rich interconnected network of knowledge. For example, think about how the following concepts might be related to each other: dog, pet, play, Frisbee, chew toy, shoe. Or, of more obvious use to you now, how these concepts are related: working memory, long-term memory, declarative memory, procedural memory, and rehearsal? Because our minds have a natural tendency to organize information conceptually, when students try to remember course material as isolated facts, they are working against their strengths.

One last important point about concepts is that they allow you to instantly know a great deal of information about something. For example, if someone hands you a small red object and says, “here is an apple,” they do not have to tell you, “it is something you can eat.” You already know that you can eat it because it is true by virtue of the fact that the object is an apple; this is called drawing an  inference , assuming that something is true on the basis of your previous knowledge (for example, of category membership or of how the world works) or logical reasoning.

Procedural knowledge

Physical skills, such as tying your shoes, doing a cartwheel, and driving a car (or doing all three at the same time, but don’t try this at home) are certainly a kind of knowledge. They are procedural knowledge, the same idea as procedural memory that you saw in Module 5. Mental skills, such as reading, debating, and planning a psychology experiment, are procedural knowledge, as well. In short, procedural knowledge is the knowledge how to do something (Cohen & Eichenbaum, 1993).

Metacognitive knowledge

Floyd used to think that he had a great memory. Now, he has a better memory. Why? Because he finally realized that his memory was not as great as he once thought it was. Because Floyd eventually learned that he often forgets where he put things, he finally developed the habit of putting things in the same place. (Unfortunately, he did not learn this lesson before losing at least 5 watches and a wedding ring.) Because he finally realized that he often forgets to do things, he finally started using the To Do list app on his phone. And so on. Floyd’s insights about the real limitations of his memory have allowed him to remember things that he used to forget.

All of us have knowledge about the way our own minds work. You may know that you have a good memory for people’s names and a poor memory for math formulas. Someone else might realize that they have difficulty remembering to do things, like stopping at the store on the way home. Others still know that they tend to overlook details. This knowledge about our own thinking is actually quite important; it is called metacognitive knowledge, or  metacognition . Like other kinds of thinking skills, it is subject to error. For example, in unpublished research, one of the authors surveyed about 120 General Psychology students on the first day of the term. Among other questions, the students were asked them to predict their grade in the class and report their current Grade Point Average. Two-thirds of the students predicted that their grade in the course would be higher than their GPA. (The reality is that at our college, students tend to earn lower grades in psychology than their overall GPA.) Another example: Students routinely report that they thought they had done well on an exam, only to discover, to their dismay, that they were wrong (more on that important problem in a moment). Both errors reveal a breakdown in metacognition.

The Dunning-Kruger Effect

In general, most college students probably do not study enough. For example, using data from the National Survey of Student Engagement, Fosnacht, McCormack, and Lerma (2018) reported that first-year students at 4-year colleges in the U.S. averaged less than 14 hours per week preparing for classes. The typical suggestion is that you should spend two hours outside of class for every hour in class, or 24 – 30 hours per week for a full-time student. Clearly, students in general are nowhere near that recommended mark. Many observers, including some faculty, believe that this shortfall is a result of students being too busy or lazy. Now, it may be true that many students are too busy, with work and family obligations, for example. Others, are not particularly motivated in school, and therefore might correctly be labeled lazy. A third possible explanation, however, is that some students might not think they need to spend this much time. And this is a matter of metacognition. Consider the scenario that we mentioned above, students thinking they had done well on an exam only to discover that they did not. Justin Kruger and David Dunning examined scenarios very much like this in 1999. Kruger and Dunning gave research participants tests measuring humor, logic, and grammar. Then, they asked the participants to assess their own abilities and test performance in these areas. They found that participants in general tended to overestimate their abilities, already a problem with metacognition. Importantly, the participants who scored the lowest overestimated their abilities the most. Specifically, students who scored in the bottom quarter (averaging in the 12th percentile) thought they had scored in the 62nd percentile. This has become known as the  Dunning-Kruger effect . Many individual faculty members have replicated these results with their own student on their course exams, including the authors of this book. Think about it. Some students who just took an exam and performed poorly believe that they did well before seeing their score. It seems very likely that these are the very same students who stopped studying the night before because they thought they were “done.” Quite simply, it is not just that they did not know the material. They did not know that they did not know the material. That is poor metacognition.

In order to develop good metacognitive skills, you should continually monitor your thinking and seek frequent feedback on the accuracy of your thinking (Medina, Castleberry, & Persky 2017). For example, in classes get in the habit of predicting your exam grades. As soon as possible after taking an exam, try to find out which questions you missed and try to figure out why. If you do this soon enough, you may be able to recall the way it felt when you originally answered the question. Did you feel confident that you had answered the question correctly? Then you have just discovered an opportunity to improve your metacognition. Be on the lookout for that feeling and respond with caution.

concept :  a mental representation of a category of things in the world

Dunning-Kruger effect : individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

inference : an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

metacognition :  knowledge about one’s own cognitive processes; thinking about your thinking

Critical thinking

One particular kind of knowledge or thinking skill that is related to metacognition is  critical thinking (Chew, 2020). You may have noticed that critical thinking is an objective in many college courses, and thus it could be a legitimate topic to cover in nearly any college course. It is particularly appropriate in psychology, however. As the science of (behavior and) mental processes, psychology is obviously well suited to be the discipline through which you should be introduced to this important way of thinking.

More importantly, there is a particular need to use critical thinking in psychology. We are all, in a way, experts in human behavior and mental processes, having engaged in them literally since birth. Thus, perhaps more than in any other class, students typically approach psychology with very clear ideas and opinions about its subject matter. That is, students already “know” a lot about psychology. The problem is, “it ain’t so much the things we don’t know that get us into trouble. It’s the things we know that just ain’t so” (Ward, quoted in Gilovich 1991). Indeed, many of students’ preconceptions about psychology are just plain wrong. Randolph Smith (2002) wrote a book about critical thinking in psychology called  Challenging Your Preconceptions,  highlighting this fact. On the other hand, many of students’ preconceptions about psychology are just plain right! But wait, how do you know which of your preconceptions are right and which are wrong? And when you come across a research finding or theory in this class that contradicts your preconceptions, what will you do? Will you stick to your original idea, discounting the information from the class? Will you immediately change your mind? Critical thinking can help us sort through this confusing mess.

But what is critical thinking? The goal of critical thinking is simple to state (but extraordinarily difficult to achieve): it is to be right, to draw the correct conclusions, to believe in things that are true and to disbelieve things that are false. We will provide two definitions of critical thinking (or, if you like, one large definition with two distinct parts). First, a more conceptual one: Critical thinking is thinking like a scientist in your everyday life (Schmaltz, Jansen, & Wenckowski, 2017).  Our second definition is more operational; it is simply a list of skills that are essential to be a critical thinker. Critical thinking entails solid reasoning and problem solving skills; skepticism; and an ability to identify biases, distortions, omissions, and assumptions. Excellent deductive and inductive reasoning, and problem solving skills contribute to critical thinking. So, you can consider the subject matter of sections 7.2 and 7.3 to be part of critical thinking. Because we will be devoting considerable time to these concepts in the rest of the module, let us begin with a discussion about the other aspects of critical thinking.

Let’s address that first part of the definition. Scientists form hypotheses, or predictions about some possible future observations. Then, they collect data, or information (think of this as making those future observations). They do their best to make unbiased observations using reliable techniques that have been verified by others. Then, and only then, they draw a conclusion about what those observations mean. Oh, and do not forget the most important part. “Conclusion” is probably not the most appropriate word because this conclusion is only tentative. A scientist is always prepared that someone else might come along and produce new observations that would require a new conclusion be drawn. Wow! If you like to be right, you could do a lot worse than using a process like this.

A Critical Thinker’s Toolkit 

Now for the second part of the definition. Good critical thinkers (and scientists) rely on a variety of tools to evaluate information. Perhaps the most recognizable tool for critical thinking is  skepticism (and this term provides the clearest link to the thinking like a scientist definition, as you are about to see). Some people intend it as an insult when they call someone a skeptic. But if someone calls you a skeptic, if they are using the term correctly, you should consider it a great compliment. Simply put, skepticism is a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided. People from Missouri should recognize this principle, as Missouri is known as the Show-Me State. As a skeptic, you are not inclined to believe something just because someone said so, because someone else believes it, or because it sounds reasonable. You must be persuaded by high quality evidence.

Of course, if that evidence is produced, you have a responsibility as a skeptic to change your belief. Failure to change a belief in the face of good evidence is not skepticism; skepticism has open mindedness at its core. M. Neil Browne and Stuart Keeley (2018) use the term weak sense critical thinking to describe critical thinking behaviors that are used only to strengthen a prior belief. Strong sense critical thinking, on the other hand, has as its goal reaching the best conclusion. Sometimes that means strengthening your prior belief, but sometimes it means changing your belief to accommodate the better evidence.

Many times, a failure to think critically or weak sense critical thinking is related to a  bias , an inclination, tendency, leaning, or prejudice. Everybody has biases, but many people are unaware of them. Awareness of your own biases gives you the opportunity to control or counteract them. Unfortunately, however, many people are happy to let their biases creep into their attempts to persuade others; indeed, it is a key part of their persuasive strategy. To see how these biases influence messages, just look at the different descriptions and explanations of the same events given by people of different ages or income brackets, or conservative versus liberal commentators, or by commentators from different parts of the world. Of course, to be successful, these people who are consciously using their biases must disguise them. Even undisguised biases can be difficult to identify, so disguised ones can be nearly impossible.

Here are some common sources of biases:

  • Personal values and beliefs.  Some people believe that human beings are basically driven to seek power and that they are typically in competition with one another over scarce resources. These beliefs are similar to the world-view that political scientists call “realism.” Other people believe that human beings prefer to cooperate and that, given the chance, they will do so. These beliefs are similar to the world-view known as “idealism.” For many people, these deeply held beliefs can influence, or bias, their interpretations of such wide ranging situations as the behavior of nations and their leaders or the behavior of the driver in the car ahead of you. For example, if your worldview is that people are typically in competition and someone cuts you off on the highway, you may assume that the driver did it purposely to get ahead of you. Other types of beliefs about the way the world is or the way the world should be, for example, political beliefs, can similarly become a significant source of bias.
  • Racism, sexism, ageism and other forms of prejudice and bigotry.  These are, sadly, a common source of bias in many people. They are essentially a special kind of “belief about the way the world is.” These beliefs—for example, that women do not make effective leaders—lead people to ignore contradictory evidence (examples of effective women leaders, or research that disputes the belief) and to interpret ambiguous evidence in a way consistent with the belief.
  • Self-interest.  When particular people benefit from things turning out a certain way, they can sometimes be very susceptible to letting that interest bias them. For example, a company that will earn a profit if they sell their product may have a bias in the way that they give information about their product. A union that will benefit if its members get a generous contract might have a bias in the way it presents information about salaries at competing organizations. (Note that our inclusion of examples describing both companies and unions is an explicit attempt to control for our own personal biases). Home buyers are often dismayed to discover that they purchased their dream house from someone whose self-interest led them to lie about flooding problems in the basement or back yard. This principle, the biasing power of self-interest, is likely what led to the famous phrase  Caveat Emptor  (let the buyer beware) .  

Knowing that these types of biases exist will help you evaluate evidence more critically. Do not forget, though, that people are not always keen to let you discover the sources of biases in their arguments. For example, companies or political organizations can sometimes disguise their support of a research study by contracting with a university professor, who comes complete with a seemingly unbiased institutional affiliation, to conduct the study.

People’s biases, conscious or unconscious, can lead them to make omissions, distortions, and assumptions that undermine our ability to correctly evaluate evidence. It is essential that you look for these elements. Always ask, what is missing, what is not as it appears, and what is being assumed here? For example, consider this (fictional) chart from an ad reporting customer satisfaction at 4 local health clubs.

what critical thinking skill is based on logic and reason

Clearly, from the results of the chart, one would be tempted to give Club C a try, as customer satisfaction is much higher than for the other 3 clubs.

There are so many distortions and omissions in this chart, however, that it is actually quite meaningless. First, how was satisfaction measured? Do the bars represent responses to a survey? If so, how were the questions asked? Most importantly, where is the missing scale for the chart? Although the differences look quite large, are they really?

Well, here is the same chart, with a different scale, this time labeled:

what critical thinking skill is based on logic and reason

Club C is not so impressive any more, is it? In fact, all of the health clubs have customer satisfaction ratings (whatever that means) between 85% and 88%. In the first chart, the entire scale of the graph included only the percentages between 83 and 89. This “judicious” choice of scale—some would call it a distortion—and omission of that scale from the chart make the tiny differences among the clubs seem important, however.

Also, in order to be a critical thinker, you need to learn to pay attention to the assumptions that underlie a message. Let us briefly illustrate the role of assumptions by touching on some people’s beliefs about the criminal justice system in the US. Some believe that a major problem with our judicial system is that many criminals go free because of legal technicalities. Others believe that a major problem is that many innocent people are convicted of crimes. The simple fact is, both types of errors occur. A person’s conclusion about which flaw in our judicial system is the greater tragedy is based on an assumption about which of these is the more serious error (letting the guilty go free or convicting the innocent). This type of assumption is called a value assumption (Browne and Keeley, 2018). It reflects the differences in values that people develop, differences that may lead us to disregard valid evidence that does not fit in with our particular values.

Oh, by the way, some students probably noticed this, but the seven tips for evaluating information that we shared in Module 1 are related to this. Actually, they are part of this section. The tips are, to a very large degree, set of ideas you can use to help you identify biases, distortions, omissions, and assumptions. If you do not remember this section, we strongly recommend you take a few minutes to review it.

skepticism :  a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

bias : an inclination, tendency, leaning, or prejudice

  • Which of your beliefs (or disbeliefs) from the Activate exercise for this section were derived from a process of critical thinking? If some of your beliefs were not based on critical thinking, are you willing to reassess these beliefs? If the answer is no, why do you think that is? If the answer is yes, what concrete steps will you take?

7.2 Reasoning and Judgment

  • What percentage of kidnappings are committed by strangers?
  • Which area of the house is riskiest: kitchen, bathroom, or stairs?
  • What is the most common cancer in the US?
  • What percentage of workplace homicides are committed by co-workers?

An essential set of procedural thinking skills is  reasoning , the ability to generate and evaluate solid conclusions from a set of statements or evidence. You should note that these conclusions (when they are generated instead of being evaluated) are one key type of inference that we described in Section 7.1. There are two main types of reasoning, deductive and inductive.

Deductive reasoning

Suppose your teacher tells you that if you get an A on the final exam in a course, you will get an A for the whole course. Then, you get an A on the final exam. What will your final course grade be? Most people can see instantly that you can conclude with certainty that you will get an A for the course. This is a type of reasoning called  deductive reasoning , which is defined as reasoning in which a conclusion is guaranteed to be true as long as the statements leading to it are true. The three statements can be listed as an  argument , with two beginning statements and a conclusion:

Statement 1: If you get an A on the final exam, you will get an A for the course

Statement 2: You get an A on the final exam

Conclusion: You will get an A for the course

This particular arrangement, in which true beginning statements lead to a guaranteed true conclusion, is known as a  deductively valid argument . Although deductive reasoning is often the subject of abstract, brain-teasing, puzzle-like word problems, it is actually an extremely important type of everyday reasoning. It is just hard to recognize sometimes. For example, imagine that you are looking for your car keys and you realize that they are either in the kitchen drawer or in your book bag. After looking in the kitchen drawer, you instantly know that they must be in your book bag. That conclusion results from a simple deductive reasoning argument. In addition, solid deductive reasoning skills are necessary for you to succeed in the sciences, philosophy, math, computer programming, and any endeavor involving the use of logic to persuade others to your point of view or to evaluate others’ arguments.

Cognitive psychologists, and before them philosophers, have been quite interested in deductive reasoning, not so much for its practical applications, but for the insights it can offer them about the ways that human beings think. One of the early ideas to emerge from the examination of deductive reasoning is that people learn (or develop) mental versions of rules that allow them to solve these types of reasoning problems (Braine, 1978; Braine, Reiser, & Rumain, 1984). The best way to see this point of view is to realize that there are different possible rules, and some of them are very simple. For example, consider this rule of logic:

therefore q

Logical rules are often presented abstractly, as letters, in order to imply that they can be used in very many specific situations. Here is a concrete version of the of the same rule:

I’ll either have pizza or a hamburger for dinner tonight (p or q)

I won’t have pizza (not p)

Therefore, I’ll have a hamburger (therefore q)

This kind of reasoning seems so natural, so easy, that it is quite plausible that we would use a version of this rule in our daily lives. At least, it seems more plausible than some of the alternative possibilities—for example, that we need to have experience with the specific situation (pizza or hamburger, in this case) in order to solve this type of problem easily. So perhaps there is a form of natural logic (Rips, 1990) that contains very simple versions of logical rules. When we are faced with a reasoning problem that maps onto one of these rules, we use the rule.

But be very careful; things are not always as easy as they seem. Even these simple rules are not so simple. For example, consider the following rule. Many people fail to realize that this rule is just as valid as the pizza or hamburger rule above.

if p, then q

therefore, not p

Concrete version:

If I eat dinner, then I will have dessert

I did not have dessert

Therefore, I did not eat dinner

The simple fact is, it can be very difficult for people to apply rules of deductive logic correctly; as a result, they make many errors when trying to do so. Is this a deductively valid argument or not?

Students who like school study a lot

Students who study a lot get good grades

Jane does not like school

Therefore, Jane does not get good grades

Many people are surprised to discover that this is not a logically valid argument; the conclusion is not guaranteed to be true from the beginning statements. Although the first statement says that students who like school study a lot, it does NOT say that students who do not like school do not study a lot. In other words, it may very well be possible to study a lot without liking school. Even people who sometimes get problems like this right might not be using the rules of deductive reasoning. Instead, they might just be making judgments for examples they know, in this case, remembering instances of people who get good grades despite not liking school.

Making deductive reasoning even more difficult is the fact that there are two important properties that an argument may have. One, it can be valid or invalid (meaning that the conclusion does or does not follow logically from the statements leading up to it). Two, an argument (or more correctly, its conclusion) can be true or false. Here is an example of an argument that is logically valid, but has a false conclusion (at least we think it is false).

Either you are eleven feet tall or the Grand Canyon was created by a spaceship crashing into the earth.

You are not eleven feet tall

Therefore the Grand Canyon was created by a spaceship crashing into the earth

This argument has the exact same form as the pizza or hamburger argument above, making it is deductively valid. The conclusion is so false, however, that it is absurd (of course, the reason the conclusion is false is that the first statement is false). When people are judging arguments, they tend to not observe the difference between deductive validity and the empirical truth of statements or conclusions. If the elements of an argument happen to be true, people are likely to judge the argument logically valid; if the elements are false, they will very likely judge it invalid (Markovits & Bouffard-Bouchard, 1992; Moshman & Franks, 1986). Thus, it seems a stretch to say that people are using these logical rules to judge the validity of arguments. Many psychologists believe that most people actually have very limited deductive reasoning skills (Johnson-Laird, 1999). They argue that when faced with a problem for which deductive logic is required, people resort to some simpler technique, such as matching terms that appear in the statements and the conclusion (Evans, 1982). This might not seem like a problem, but what if reasoners believe that the elements are true and they happen to be wrong; they will would believe that they are using a form of reasoning that guarantees they are correct and yet be wrong.

deductive reasoning :  a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

argument :  a set of statements in which the beginning statements lead to a conclusion

deductively valid argument :  an argument for which true beginning statements guarantee that the conclusion is true

Inductive reasoning and judgment

Every day, you make many judgments about the likelihood of one thing or another. Whether you realize it or not, you are practicing  inductive reasoning   on a daily basis. In inductive reasoning arguments, a conclusion is likely whenever the statements preceding it are true. The first thing to notice about inductive reasoning is that, by definition, you can never be sure about your conclusion; you can only estimate how likely the conclusion is. Inductive reasoning may lead you to focus on Memory Encoding and Recoding when you study for the exam, but it is possible the instructor will ask more questions about Memory Retrieval instead. Unlike deductive reasoning, the conclusions you reach through inductive reasoning are only probable, not certain. That is why scientists consider inductive reasoning weaker than deductive reasoning. But imagine how hard it would be for us to function if we could not act unless we were certain about the outcome.

Inductive reasoning can be represented as logical arguments consisting of statements and a conclusion, just as deductive reasoning can be. In an inductive argument, you are given some statements and a conclusion (or you are given some statements and must draw a conclusion). An argument is  inductively strong   if the conclusion would be very probable whenever the statements are true. So, for example, here is an inductively strong argument:

  • Statement #1: The forecaster on Channel 2 said it is going to rain today.
  • Statement #2: The forecaster on Channel 5 said it is going to rain today.
  • Statement #3: It is very cloudy and humid.
  • Statement #4: You just heard thunder.
  • Conclusion (or judgment): It is going to rain today.

Think of the statements as evidence, on the basis of which you will draw a conclusion. So, based on the evidence presented in the four statements, it is very likely that it will rain today. Will it definitely rain today? Certainly not. We can all think of times that the weather forecaster was wrong.

A true story: Some years ago psychology student was watching a baseball playoff game between the St. Louis Cardinals and the Los Angeles Dodgers. A graphic on the screen had just informed the audience that the Cardinal at bat, (Hall of Fame shortstop) Ozzie Smith, a switch hitter batting left-handed for this plate appearance, had never, in nearly 3000 career at-bats, hit a home run left-handed. The student, who had just learned about inductive reasoning in his psychology class, turned to his companion (a Cardinals fan) and smugly said, “It is an inductively strong argument that Ozzie Smith will not hit a home run.” He turned back to face the television just in time to watch the ball sail over the right field fence for a home run. Although the student felt foolish at the time, he was not wrong. It was an inductively strong argument; 3000 at-bats is an awful lot of evidence suggesting that the Wizard of Ozz (as he was known) would not be hitting one out of the park (think of each at-bat without a home run as a statement in an inductive argument). Sadly (for the die-hard Cubs fan and Cardinals-hating student), despite the strength of the argument, the conclusion was wrong.

Given the possibility that we might draw an incorrect conclusion even with an inductively strong argument, we really want to be sure that we do, in fact, make inductively strong arguments. If we judge something probable, it had better be probable. If we judge something nearly impossible, it had better not happen. Think of inductive reasoning, then, as making reasonably accurate judgments of the probability of some conclusion given a set of evidence.

We base many decisions in our lives on inductive reasoning. For example:

Statement #1: Psychology is not my best subject

Statement #2: My psychology instructor has a reputation for giving difficult exams

Statement #3: My first psychology exam was much harder than I expected

Judgment: The next exam will probably be very difficult.

Decision: I will study tonight instead of watching Netflix.

Some other examples of judgments that people commonly make in a school context include judgments of the likelihood that:

  • A particular class will be interesting/useful/difficult
  • You will be able to finish writing a paper by next week if you go out tonight
  • Your laptop’s battery will last through the next trip to the library
  • You will not miss anything important if you skip class tomorrow
  • Your instructor will not notice if you skip class tomorrow
  • You will be able to find a book that you will need for a paper
  • There will be an essay question about Memory Encoding on the next exam

Tversky and Kahneman (1983) recognized that there are two general ways that we might make these judgments; they termed them extensional (i.e., following the laws of probability) and intuitive (i.e., using shortcuts or heuristics, see below). We will use a similar distinction between Type 1 and Type 2 thinking, as described by Keith Stanovich and his colleagues (Evans and Stanovich, 2013; Stanovich and West, 2000). Type 1 thinking is fast, automatic, effortful, and emotional. In fact, it is hardly fair to call it reasoning at all, as judgments just seem to pop into one’s head. Type 2 thinking , on the other hand, is slow, effortful, and logical. So obviously, it is more likely to lead to a correct judgment, or an optimal decision. The problem is, we tend to over-rely on Type 1. Now, we are not saying that Type 2 is the right way to go for every decision or judgment we make. It seems a bit much, for example, to engage in a step-by-step logical reasoning procedure to decide whether we will have chicken or fish for dinner tonight.

Many bad decisions in some very important contexts, however, can be traced back to poor judgments of the likelihood of certain risks or outcomes that result from the use of Type 1 when a more logical reasoning process would have been more appropriate. For example:

Statement #1: It is late at night.

Statement #2: Albert has been drinking beer for the past five hours at a party.

Statement #3: Albert is not exactly sure where he is or how far away home is.

Judgment: Albert will have no difficulty walking home.

Decision: He walks home alone.

As you can see in this example, the three statements backing up the judgment do not really support it. In other words, this argument is not inductively strong because it is based on judgments that ignore the laws of probability. What are the chances that someone facing these conditions will be able to walk home alone easily? And one need not be drunk to make poor decisions based on judgments that just pop into our heads.

The truth is that many of our probability judgments do not come very close to what the laws of probability say they should be. Think about it. In order for us to reason in accordance with these laws, we would need to know the laws of probability, which would allow us to calculate the relationship between particular pieces of evidence and the probability of some outcome (i.e., how much likelihood should change given a piece of evidence), and we would have to do these heavy math calculations in our heads. After all, that is what Type 2 requires. Needless to say, even if we were motivated, we often do not even know how to apply Type 2 reasoning in many cases.

So what do we do when we don’t have the knowledge, skills, or time required to make the correct mathematical judgment? Do we hold off and wait until we can get better evidence? Do we read up on probability and fire up our calculator app so we can compute the correct probability? Of course not. We rely on Type 1 thinking. We “wing it.” That is, we come up with a likelihood estimate using some means at our disposal. Psychologists use the term heuristic to describe the type of “winging it” we are talking about. A  heuristic   is a shortcut strategy that we use to make some judgment or solve some problem (see Section 7.3). Heuristics are easy and quick, think of them as the basic procedures that are characteristic of Type 1.  They can absolutely lead to reasonably good judgments and decisions in some situations (like choosing between chicken and fish for dinner). They are, however, far from foolproof. There are, in fact, quite a lot of situations in which heuristics can lead us to make incorrect judgments, and in many cases the decisions based on those judgments can have serious consequences.

Let us return to the activity that begins this section. You were asked to judge the likelihood (or frequency) of certain events and risks. You were free to come up with your own evidence (or statements) to make these judgments. This is where a heuristic crops up. As a judgment shortcut, we tend to generate specific examples of those very events to help us decide their likelihood or frequency. For example, if we are asked to judge how common, frequent, or likely a particular type of cancer is, many of our statements would be examples of specific cancer cases:

Statement #1: Andy Kaufman (comedian) had lung cancer.

Statement #2: Colin Powell (US Secretary of State) had prostate cancer.

Statement #3: Bob Marley (musician) had skin and brain cancer

Statement #4: Sandra Day O’Connor (Supreme Court Justice) had breast cancer.

Statement #5: Fred Rogers (children’s entertainer) had stomach cancer.

Statement #6: Robin Roberts (news anchor) had breast cancer.

Statement #7: Bette Davis (actress) had breast cancer.

Judgment: Breast cancer is the most common type.

Your own experience or memory may also tell you that breast cancer is the most common type. But it is not (although it is common). Actually, skin cancer is the most common type in the US. We make the same types of misjudgments all the time because we do not generate the examples or evidence according to their actual frequencies or probabilities. Instead, we have a tendency (or bias) to search for the examples in memory; if they are easy to retrieve, we assume that they are common. To rephrase this in the language of the heuristic, events seem more likely to the extent that they are available to memory. This bias has been termed the  availability heuristic   (Kahneman and Tversky, 1974).

The fact that we use the availability heuristic does not automatically mean that our judgment is wrong. The reason we use heuristics in the first place is that they work fairly well in many cases (and, of course that they are easy to use). So, the easiest examples to think of sometimes are the most common ones. Is it more likely that a member of the U.S. Senate is a man or a woman? Most people have a much easier time generating examples of male senators. And as it turns out, the U.S. Senate has many more men than women (74 to 26 in 2020). In this case, then, the availability heuristic would lead you to make the correct judgment; it is far more likely that a senator would be a man.

In many other cases, however, the availability heuristic will lead us astray. This is because events can be memorable for many reasons other than their frequency. Section 5.2, Encoding Meaning, suggested that one good way to encode the meaning of some information is to form a mental image of it. Thus, information that has been pictured mentally will be more available to memory. Indeed, an event that is vivid and easily pictured will trick many people into supposing that type of event is more common than it actually is. Repetition of information will also make it more memorable. So, if the same event is described to you in a magazine, on the evening news, on a podcast that you listen to, and in your Facebook feed; it will be very available to memory. Again, the availability heuristic will cause you to misperceive the frequency of these types of events.

Most interestingly, information that is unusual is more memorable. Suppose we give you the following list of words to remember: box, flower, letter, platypus, oven, boat, newspaper, purse, drum, car. Very likely, the easiest word to remember would be platypus, the unusual one. The same thing occurs with memories of events. An event may be available to memory because it is unusual, yet the availability heuristic leads us to judge that the event is common. Did you catch that? In these cases, the availability heuristic makes us think the exact opposite of the true frequency. We end up thinking something is common because it is unusual (and therefore memorable). Yikes.

The misapplication of the availability heuristic sometimes has unfortunate results. For example, if you went to K-12 school in the US over the past 10 years, it is extremely likely that you have participated in lockdown and active shooter drills. Of course, everyone is trying to prevent the tragedy of another school shooting. And believe us, we are not trying to minimize how terrible the tragedy is. But the truth of the matter is, school shootings are extremely rare. Because the federal government does not keep a database of school shootings, the Washington Post has maintained their own running tally. Between 1999 and January 2020 (the date of the most recent school shooting with a death in the US at of the time this paragraph was written), the Post reported a total of 254 people died in school shootings in the US. Not 254 per year, 254 total. That is an average of 12 per year. Of course, that is 254 people who should not have died (particularly because many were children), but in a country with approximately 60,000,000 students and teachers, this is a very small risk.

But many students and teachers are terrified that they will be victims of school shootings because of the availability heuristic. It is so easy to think of examples (they are very available to memory) that people believe the event is very common. It is not. And there is a downside to this. We happen to believe that there is an enormous gun violence problem in the United States. According the the Centers for Disease Control and Prevention, there were 39,773 firearm deaths in the US in 2017. Fifteen of those deaths were in school shootings, according to the Post. 60% of those deaths were suicides. When people pay attention to the school shooting risk (low), they often fail to notice the much larger risk.

And examples like this are by no means unique. The authors of this book have been teaching psychology since the 1990’s. We have been able to make the exact same arguments about the misapplication of the availability heuristics and keep them current by simply swapping out for the “fear of the day.” In the 1990’s it was children being kidnapped by strangers (it was known as “stranger danger”) despite the facts that kidnappings accounted for only 2% of the violent crimes committed against children, and only 24% of kidnappings are committed by strangers (US Department of Justice, 2007). This fear overlapped with the fear of terrorism that gripped the country after the 2001 terrorist attacks on the World Trade Center and US Pentagon and still plagues the population of the US somewhat in 2020. After a well-publicized, sensational act of violence, people are extremely likely to increase their estimates of the chances that they, too, will be victims of terror. Think about the reality, however. In October of 2001, a terrorist mailed anthrax spores to members of the US government and a number of media companies. A total of five people died as a result of this attack. The nation was nearly paralyzed by the fear of dying from the attack; in reality the probability of an individual person dying was 0.00000002.

The availability heuristic can lead you to make incorrect judgments in a school setting as well. For example, suppose you are trying to decide if you should take a class from a particular math professor. You might try to make a judgment of how good a teacher she is by recalling instances of friends and acquaintances making comments about her teaching skill. You may have some examples that suggest that she is a poor teacher very available to memory, so on the basis of the availability heuristic you judge her a poor teacher and decide to take the class from someone else. What if, however, the instances you recalled were all from the same person, and this person happens to be a very colorful storyteller? The subsequent ease of remembering the instances might not indicate that the professor is a poor teacher after all.

Although the availability heuristic is obviously important, it is not the only judgment heuristic we use. Amos Tversky and Daniel Kahneman examined the role of heuristics in inductive reasoning in a long series of studies. Kahneman received a Nobel Prize in Economics for this research in 2002, and Tversky would have certainly received one as well if he had not died of melanoma at age 59 in 1996 (Nobel Prizes are not awarded posthumously). Kahneman and Tversky demonstrated repeatedly that people do not reason in ways that are consistent with the laws of probability. They identified several heuristic strategies that people use instead to make judgments about likelihood. The importance of this work for economics (and the reason that Kahneman was awarded the Nobel Prize) is that earlier economic theories had assumed that people do make judgments rationally, that is, in agreement with the laws of probability.

Another common heuristic that people use for making judgments is the  representativeness heuristic (Kahneman & Tversky 1973). Suppose we describe a person to you. He is quiet and shy, has an unassuming personality, and likes to work with numbers. Is this person more likely to be an accountant or an attorney? If you said accountant, you were probably using the representativeness heuristic. Our imaginary person is judged likely to be an accountant because he resembles, or is representative of the concept of, an accountant. When research participants are asked to make judgments such as these, the only thing that seems to matter is the representativeness of the description. For example, if told that the person described is in a room that contains 70 attorneys and 30 accountants, participants will still assume that he is an accountant.

inductive reasoning :  a type of reasoning in which we make judgments about likelihood from sets of evidence

inductively strong argument :  an inductive argument in which the beginning statements lead to a conclusion that is probably true

heuristic :  a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

availability heuristic :  judging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

representativeness heuristic:   judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

Type 1 thinking : fast, automatic, and emotional thinking.

Type 2 thinking : slow, effortful, and logical thinking.

  • What percentage of workplace homicides are co-worker violence?

Many people get these questions wrong. The answers are 10%; stairs; skin; 6%. How close were your answers? Explain how the availability heuristic might have led you to make the incorrect judgments.

  • Can you think of some other judgments that you have made (or beliefs that you have) that might have been influenced by the availability heuristic?

7.3 Problem Solving

  • Please take a few minutes to list a number of problems that you are facing right now.
  • Now write about a problem that you recently solved.
  • What is your definition of a problem?

Mary has a problem. Her daughter, ordinarily quite eager to please, appears to delight in being the last person to do anything. Whether getting ready for school, going to piano lessons or karate class, or even going out with her friends, she seems unwilling or unable to get ready on time. Other people have different kinds of problems. For example, many students work at jobs, have numerous family commitments, and are facing a course schedule full of difficult exams, assignments, papers, and speeches. How can they find enough time to devote to their studies and still fulfill their other obligations? Speaking of students and their problems: Show that a ball thrown vertically upward with initial velocity v0 takes twice as much time to return as to reach the highest point (from Spiegel, 1981).

These are three very different situations, but we have called them all problems. What makes them all the same, despite the differences? A psychologist might define a  problem   as a situation with an initial state, a goal state, and a set of possible intermediate states. Somewhat more meaningfully, we might consider a problem a situation in which you are in here one state (e.g., daughter is always late), you want to be there in another state (e.g., daughter is not always late), and with no obvious way to get from here to there. Defined this way, each of the three situations we outlined can now be seen as an example of the same general concept, a problem. At this point, you might begin to wonder what is not a problem, given such a general definition. It seems that nearly every non-routine task we engage in could qualify as a problem. As long as you realize that problems are not necessarily bad (it can be quite fun and satisfying to rise to the challenge and solve a problem), this may be a useful way to think about it.

Can we identify a set of problem-solving skills that would apply to these very different kinds of situations? That task, in a nutshell, is a major goal of this section. Let us try to begin to make sense of the wide variety of ways that problems can be solved with an important observation: the process of solving problems can be divided into two key parts. First, people have to notice, comprehend, and represent the problem properly in their minds (called  problem representation ). Second, they have to apply some kind of solution strategy to the problem. Psychologists have studied both of these key parts of the process in detail.

When you first think about the problem-solving process, you might guess that most of our difficulties would occur because we are failing in the second step, the application of strategies. Although this can be a significant difficulty much of the time, the more important source of difficulty is probably problem representation. In short, we often fail to solve a problem because we are looking at it, or thinking about it, the wrong way.

problem :  a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

problem representation :  noticing, comprehending and forming a mental conception of a problem

Defining and Mentally Representing Problems in Order to Solve Them

So, the main obstacle to solving a problem is that we do not clearly understand exactly what the problem is. Recall the problem with Mary’s daughter always being late. One way to represent, or to think about, this problem is that she is being defiant. She refuses to get ready in time. This type of representation or definition suggests a particular type of solution. Another way to think about the problem, however, is to consider the possibility that she is simply being sidetracked by interesting diversions. This different conception of what the problem is (i.e., different representation) suggests a very different solution strategy. For example, if Mary defines the problem as defiance, she may be tempted to solve the problem using some kind of coercive tactics, that is, to assert her authority as her mother and force her to listen. On the other hand, if Mary defines the problem as distraction, she may try to solve it by simply removing the distracting objects.

As you might guess, when a problem is represented one way, the solution may seem very difficult, or even impossible. Seen another way, the solution might be very easy. For example, consider the following problem (from Nasar, 1998):

Two bicyclists start 20 miles apart and head toward each other, each going at a steady rate of 10 miles per hour. At the same time, a fly that travels at a steady 15 miles per hour starts from the front wheel of the southbound bicycle and flies to the front wheel of the northbound one, then turns around and flies to the front wheel of the southbound one again, and continues in this manner until he is crushed between the two front wheels. Question: what total distance did the fly cover?

Please take a few minutes to try to solve this problem.

Most people represent this problem as a question about a fly because, well, that is how the question is asked. The solution, using this representation, is to figure out how far the fly travels on the first leg of its journey, then add this total to how far it travels on the second leg of its journey (when it turns around and returns to the first bicycle), then continue to add the smaller distance from each leg of the journey until you converge on the correct answer. You would have to be quite skilled at math to solve this problem, and you would probably need some time and pencil and paper to do it.

If you consider a different representation, however, you can solve this problem in your head. Instead of thinking about it as a question about a fly, think about it as a question about the bicycles. They are 20 miles apart, and each is traveling 10 miles per hour. How long will it take for the bicycles to reach each other? Right, one hour. The fly is traveling 15 miles per hour; therefore, it will travel a total of 15 miles back and forth in the hour before the bicycles meet. Represented one way (as a problem about a fly), the problem is quite difficult. Represented another way (as a problem about two bicycles), it is easy. Changing your representation of a problem is sometimes the best—sometimes the only—way to solve it.

Unfortunately, however, changing a problem’s representation is not the easiest thing in the world to do. Often, problem solvers get stuck looking at a problem one way. This is called  fixation . Most people who represent the preceding problem as a problem about a fly probably do not pause to reconsider, and consequently change, their representation. A parent who thinks her daughter is being defiant is unlikely to consider the possibility that her behavior is far less purposeful.

Problem-solving fixation was examined by a group of German psychologists called Gestalt psychologists during the 1930’s and 1940’s. Karl Dunker, for example, discovered an important type of failure to take a different perspective called  functional fixedness . Imagine being a participant in one of his experiments. You are asked to figure out how to mount two candles on a door and are given an assortment of odds and ends, including a small empty cardboard box and some thumbtacks. Perhaps you have already figured out a solution: tack the box to the door so it forms a platform, then put the candles on top of the box. Most people are able to arrive at this solution. Imagine a slight variation of the procedure, however. What if, instead of being empty, the box had matches in it? Most people given this version of the problem do not arrive at the solution given above. Why? Because it seems to people that when the box contains matches, it already has a function; it is a matchbox. People are unlikely to consider a new function for an object that already has a function. This is functional fixedness.

Mental set is a type of fixation in which the problem solver gets stuck using the same solution strategy that has been successful in the past, even though the solution may no longer be useful. It is commonly seen when students do math problems for homework. Often, several problems in a row require the reapplication of the same solution strategy. Then, without warning, the next problem in the set requires a new strategy. Many students attempt to apply the formerly successful strategy on the new problem and therefore cannot come up with a correct answer.

The thing to remember is that you cannot solve a problem unless you correctly identify what it is to begin with (initial state) and what you want the end result to be (goal state). That may mean looking at the problem from a different angle and representing it in a new way. The correct representation does not guarantee a successful solution, but it certainly puts you on the right track.

A bit more optimistically, the Gestalt psychologists discovered what may be considered the opposite of fixation, namely  insight . Sometimes the solution to a problem just seems to pop into your head. Wolfgang Kohler examined insight by posing many different problems to chimpanzees, principally problems pertaining to their acquisition of out-of-reach food. In one version, a banana was placed outside of a chimpanzee’s cage and a short stick inside the cage. The stick was too short to retrieve the banana, but was long enough to retrieve a longer stick also located outside of the cage. This second stick was long enough to retrieve the banana. After trying, and failing, to reach the banana with the shorter stick, the chimpanzee would try a couple of random-seeming attempts, react with some apparent frustration or anger, then suddenly rush to the longer stick, the correct solution fully realized at this point. This sudden appearance of the solution, observed many times with many different problems, was termed insight by Kohler.

Lest you think it pertains to chimpanzees only, Karl Dunker demonstrated that children also solve problems through insight in the 1930s. More importantly, you have probably experienced insight yourself. Think back to a time when you were trying to solve a difficult problem. After struggling for a while, you gave up. Hours later, the solution just popped into your head, perhaps when you were taking a walk, eating dinner, or lying in bed.

fixation :  when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

functional fixedness :  a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

mental set :  a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

insight :  a sudden realization of a solution to a problem

Solving Problems by Trial and Error

Correctly identifying the problem and your goal for a solution is a good start, but recall the psychologist’s definition of a problem: it includes a set of possible intermediate states. Viewed this way, a problem can be solved satisfactorily only if one can find a path through some of these intermediate states to the goal. Imagine a fairly routine problem, finding a new route to school when your ordinary route is blocked (by road construction, for example). At each intersection, you may turn left, turn right, or go straight. A satisfactory solution to the problem (of getting to school) is a sequence of selections at each intersection that allows you to wind up at school.

If you had all the time in the world to get to school, you might try choosing intermediate states randomly. At one corner you turn left, the next you go straight, then you go left again, then right, then right, then straight. Unfortunately, trial and error will not necessarily get you where you want to go, and even if it does, it is not the fastest way to get there. For example, when a friend of ours was in college, he got lost on the way to a concert and attempted to find the venue by choosing streets to turn onto randomly (this was long before the use of GPS). Amazingly enough, the strategy worked, although he did end up missing two out of the three bands who played that night.

Trial and error is not all bad, however. B.F. Skinner, a prominent behaviorist psychologist, suggested that people often behave randomly in order to see what effect the behavior has on the environment and what subsequent effect this environmental change has on them. This seems particularly true for the very young person. Picture a child filling a household’s fish tank with toilet paper, for example. To a child trying to develop a repertoire of creative problem-solving strategies, an odd and random behavior might be just the ticket. Eventually, the exasperated parent hopes, the child will discover that many of these random behaviors do not successfully solve problems; in fact, in many cases they create problems. Thus, one would expect a decrease in this random behavior as a child matures. You should realize, however, that the opposite extreme is equally counterproductive. If the children become too rigid, never trying something unexpected and new, their problem solving skills can become too limited.

Effective problem solving seems to call for a happy medium that strikes a balance between using well-founded old strategies and trying new ground and territory. The individual who recognizes a situation in which an old problem-solving strategy would work best, and who can also recognize a situation in which a new untested strategy is necessary is halfway to success.

Solving Problems with Algorithms and Heuristics

For many problems there is a possible strategy available that will guarantee a correct solution. For example, think about math problems. Math lessons often consist of step-by-step procedures that can be used to solve the problems. If you apply the strategy without error, you are guaranteed to arrive at the correct solution to the problem. This approach is called using an  algorithm , a term that denotes the step-by-step procedure that guarantees a correct solution. Because algorithms are sometimes available and come with a guarantee, you might think that most people use them frequently. Unfortunately, however, they do not. As the experience of many students who have struggled through math classes can attest, algorithms can be extremely difficult to use, even when the problem solver knows which algorithm is supposed to work in solving the problem. In problems outside of math class, we often do not even know if an algorithm is available. It is probably fair to say, then, that algorithms are rarely used when people try to solve problems.

Because algorithms are so difficult to use, people often pass up the opportunity to guarantee a correct solution in favor of a strategy that is much easier to use and yields a reasonable chance of coming up with a correct solution. These strategies are called  problem solving heuristics . Similar to what you saw in section 6.2 with reasoning heuristics, a problem solving heuristic is a shortcut strategy that people use when trying to solve problems. It usually works pretty well, but does not guarantee a correct solution to the problem. For example, one problem solving heuristic might be “always move toward the goal” (so when trying to get to school when your regular route is blocked, you would always turn in the direction you think the school is). A heuristic that people might use when doing math homework is “use the same solution strategy that you just used for the previous problem.”

By the way, we hope these last two paragraphs feel familiar to you. They seem to parallel a distinction that you recently learned. Indeed, algorithms and problem-solving heuristics are another example of the distinction between Type 1 thinking and Type 2 thinking.

Although it is probably not worth describing a large number of specific heuristics, two observations about heuristics are worth mentioning. First, heuristics can be very general or they can be very specific, pertaining to a particular type of problem only. For example, “always move toward the goal” is a general strategy that you can apply to countless problem situations. On the other hand, “when you are lost without a functioning gps, pick the most expensive car you can see and follow it” is specific to the problem of being lost. Second, all heuristics are not equally useful. One heuristic that many students know is “when in doubt, choose c for a question on a multiple-choice exam.” This is a dreadful strategy because many instructors intentionally randomize the order of answer choices. Another test-taking heuristic, somewhat more useful, is “look for the answer to one question somewhere else on the exam.”

You really should pay attention to the application of heuristics to test taking. Imagine that while reviewing your answers for a multiple-choice exam before turning it in, you come across a question for which you originally thought the answer was c. Upon reflection, you now think that the answer might be b. Should you change the answer to b, or should you stick with your first impression? Most people will apply the heuristic strategy to “stick with your first impression.” What they do not realize, of course, is that this is a very poor strategy (Lilienfeld et al, 2009). Most of the errors on exams come on questions that were answered wrong originally and were not changed (so they remain wrong). There are many fewer errors where we change a correct answer to an incorrect answer. And, of course, sometimes we change an incorrect answer to a correct answer. In fact, research has shown that it is more common to change a wrong answer to a right answer than vice versa (Bruno, 2001).

The belief in this poor test-taking strategy (stick with your first impression) is based on the  confirmation bias   (Nickerson, 1998; Wason, 1960). You first saw the confirmation bias in Module 1, but because it is so important, we will repeat the information here. People have a bias, or tendency, to notice information that confirms what they already believe. Somebody at one time told you to stick with your first impression, so when you look at the results of an exam you have taken, you will tend to notice the cases that are consistent with that belief. That is, you will notice the cases in which you originally had an answer correct and changed it to the wrong answer. You tend not to notice the other two important (and more common) cases, changing an answer from wrong to right, and leaving a wrong answer unchanged.

Because heuristics by definition do not guarantee a correct solution to a problem, mistakes are bound to occur when we employ them. A poor choice of a specific heuristic will lead to an even higher likelihood of making an error.

algorithm :  a step-by-step procedure that guarantees a correct solution to a problem

problem solving heuristic :  a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

confirmation bias :  people’s tendency to notice information that confirms what they already believe

An Effective Problem-Solving Sequence

You may be left with a big question: If algorithms are hard to use and heuristics often don’t work, how am I supposed to solve problems? Robert Sternberg (1996), as part of his theory of what makes people successfully intelligent (Module 8) described a problem-solving sequence that has been shown to work rather well:

  • Identify the existence of a problem.  In school, problem identification is often easy; problems that you encounter in math classes, for example, are conveniently labeled as problems for you. Outside of school, however, realizing that you have a problem is a key difficulty that you must get past in order to begin solving it. You must be very sensitive to the symptoms that indicate a problem.
  • Define the problem.  Suppose you realize that you have been having many headaches recently. Very likely, you would identify this as a problem. If you define the problem as “headaches,” the solution would probably be to take aspirin or ibuprofen or some other anti-inflammatory medication. If the headaches keep returning, however, you have not really solved the problem—likely because you have mistaken a symptom for the problem itself. Instead, you must find the root cause of the headaches. Stress might be the real problem. For you to successfully solve many problems it may be necessary for you to overcome your fixations and represent the problems differently. One specific strategy that you might find useful is to try to define the problem from someone else’s perspective. How would your parents, spouse, significant other, doctor, etc. define the problem? Somewhere in these different perspectives may lurk the key definition that will allow you to find an easier and permanent solution.
  • Formulate strategy.  Now it is time to begin planning exactly how the problem will be solved. Is there an algorithm or heuristic available for you to use? Remember, heuristics by their very nature guarantee that occasionally you will not be able to solve the problem. One point to keep in mind is that you should look for long-range solutions, which are more likely to address the root cause of a problem than short-range solutions.
  • Represent and organize information.  Similar to the way that the problem itself can be defined, or represented in multiple ways, information within the problem is open to different interpretations. Suppose you are studying for a big exam. You have chapters from a textbook and from a supplemental reader, along with lecture notes that all need to be studied. How should you (represent and) organize these materials? Should you separate them by type of material (text versus reader versus lecture notes), or should you separate them by topic? To solve problems effectively, you must learn to find the most useful representation and organization of information.
  • Allocate resources.  This is perhaps the simplest principle of the problem solving sequence, but it is extremely difficult for many people. First, you must decide whether time, money, skills, effort, goodwill, or some other resource would help to solve the problem Then, you must make the hard choice of deciding which resources to use, realizing that you cannot devote maximum resources to every problem. Very often, the solution to problem is simply to change how resources are allocated (for example, spending more time studying in order to improve grades).
  • Monitor and evaluate solutions.  Pay attention to the solution strategy while you are applying it. If it is not working, you may be able to select another strategy. Another fact you should realize about problem solving is that it never does end. Solving one problem frequently brings up new ones. Good monitoring and evaluation of your problem solutions can help you to anticipate and get a jump on solving the inevitable new problems that will arise.

Please note that this as  an  effective problem-solving sequence, not  the  effective problem solving sequence. Just as you can become fixated and end up representing the problem incorrectly or trying an inefficient solution, you can become stuck applying the problem-solving sequence in an inflexible way. Clearly there are problem situations that can be solved without using these skills in this order.

Additionally, many real-world problems may require that you go back and redefine a problem several times as the situation changes (Sternberg et al. 2000). For example, consider the problem with Mary’s daughter one last time. At first, Mary did represent the problem as one of defiance. When her early strategy of pleading and threatening punishment was unsuccessful, Mary began to observe her daughter more carefully. She noticed that, indeed, her daughter’s attention would be drawn by an irresistible distraction or book. Fresh with a re-representation of the problem, she began a new solution strategy. She began to remind her daughter every few minutes to stay on task and remind her that if she is ready before it is time to leave, she may return to the book or other distracting object at that time. Fortunately, this strategy was successful, so Mary did not have to go back and redefine the problem again.

Pick one or two of the problems that you listed when you first started studying this section and try to work out the steps of Sternberg’s problem solving sequence for each one.

a mental representation of a category of things in the world

an assumption about the truth of something that is not stated. Inferences come from our prior knowledge and experience, and from logical reasoning

knowledge about one’s own cognitive processes; thinking about your thinking

individuals who are less competent tend to overestimate their abilities more than individuals who are more competent do

Thinking like a scientist in your everyday life for the purpose of drawing correct conclusions. It entails skepticism; an ability to identify biases, distortions, omissions, and assumptions; and excellent deductive and inductive reasoning, and problem solving skills.

a way of thinking in which you refrain from drawing a conclusion or changing your mind until good evidence has been provided

an inclination, tendency, leaning, or prejudice

a type of reasoning in which the conclusion is guaranteed to be true any time the statements leading up to it are true

a set of statements in which the beginning statements lead to a conclusion

an argument for which true beginning statements guarantee that the conclusion is true

a type of reasoning in which we make judgments about likelihood from sets of evidence

an inductive argument in which the beginning statements lead to a conclusion that is probably true

fast, automatic, and emotional thinking

slow, effortful, and logical thinking

a shortcut strategy that we use to make judgments and solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

udging the frequency or likelihood of some event type according to how easily examples of the event can be called to mind (i.e., how available they are to memory)

judging the likelihood that something is a member of a category on the basis of how much it resembles a typical category member (i.e., how representative it is of the category)

a situation in which we are in an initial state, have a desired goal state, and there is a number of possible intermediate states (i.e., there is no obvious way to get from the initial to the goal state)

noticing, comprehending and forming a mental conception of a problem

when a problem solver gets stuck looking at a problem a particular way and cannot change his or her representation of it (or his or her intended solution strategy)

a specific type of fixation in which a problem solver cannot think of a new use for an object that already has a function

a specific type of fixation in which a problem solver gets stuck using the same solution strategy that has been successful in the past

a sudden realization of a solution to a problem

a step-by-step procedure that guarantees a correct solution to a problem

The tendency to notice and pay attention to information that confirms your prior beliefs and to ignore information that disconfirms them.

a shortcut strategy that we use to solve problems. Although they are easy to use, they do not guarantee correct judgments and solutions

Introduction to Psychology Copyright © 2020 by Ken Gray; Elizabeth Arnott-Hill; and Or'Shaundra Benson is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License , except where otherwise noted.

Share This Book

Logical Reasoning

I. definition.

Logical reasoning (or just “logic” for short) is one of the fundamental skills of effective thinking. It works by raising questions like:

  • If this is true, what else must be true?
  • If this is true, what else is probably true?
  • If this isn’t true, what else can’t be true?

These are all inferences : they’re connections between a given sentence (the “premise”) and some other sentence (the “conclusion”). Inferences are the basic building blocks of logical reasoning, and there are strict rules governing what counts as a valid inference and what doesn’t — it’s a lot like math, but applied to sentences rather than numbers.

If there is someone at the door, the dog will bark.

Assuming this sentence holds true, there are some other sentences that must also be true.

  • If the dog didn’t bark, there is no one at the door.
  • Just because the dog barked doesn’t mean there’s someone at the door.

There are also a few sentences that are probably true, such as:

  • The dog can sense (hear or smell) when someone is at the door.
  • The dog belongs to the people who live in the house where the door is located.

II. Types of Logical Reasoning

There are two basic types of logic, each defined by its own type of inference. They correspond to the two categories in the example from section 1.

  • Deduction is when the conclusion, based on the premises, must be true. For example, if it’s true that the dog always barks when someone is at the door and it’s true that there’s someone at the door, then it must be true that the dog will bark. Of course, the real world is messy and doesn’t always conform to the strictures of deductive reasoning (there are probably no actual dogs who always bark when someone’s at the door), but deductive reasoning is still important in fields like law, engineering, and science, where strict truths still hold. All math is deductive.
  • Induction is when the conclusion, based on the premises, is probably The answers are less definitive than they are in deductive reasoning, but they are often more useful. Induction is our only way of predicting what will happen in the future: we look at the way things are, and the way they have been in the past, and we make an educated guess about what will probably happen. But all predictions are based on probability, not certainty: for example, it’s extremely probable that the sun will rise tomorrow morning. But it’s not certain , since there are all sorts of catastrophes that could happen in between now and then.

III. Logical Reasoning vs. Critical Thinking

Logic is one of the main pillars of critical thinking . And there’s no question that critical thinking would be impossible without some understanding of logical reasoning. However, there are many other skills involved in critical thinking, such as:

  • Empathy , or the ability to imagine what someone else is feeling or experiencing. This is a crucial skill for critical thinking, since it allows you to broaden your perspective and reflect on your actions and beliefs. Empathy also makes you a better student of philosophy because it enables you to put yourself in the author’s shoes and understand the argument from within.
  • Analogy , or noticing similarities and thinking them through. Analogies allow us to draw conclusions about, for example, the similarity between our own time and some moment in history, and thus try to make better decisions in the future. This skill is closely related to inductive logic.
  • Creativity . Critical thinking is all about innovative problem-solving and coming up with new ideas, so it’s heavily dependent on creativity. Just like a creative art, critical thinking depends on assembling old parts in new ways, working inventively within constraints, and matching moments of inspiration with hours of rigorous craft.

III. Quotes About Logical Reasoning

“I am convinced that the act of thinking logically cannot possibly be natural to the human mind. If it were, then mathematics would be everybody’s easiest course at school and our species would not have taken several millennia to figure out the scientific method.” (Neil Degrasse Tyson)

Neil Degrasse Tyson is an astrophysicist and TV personality who passionately advocates for science and critical thinking. In this quote, he suggests that science and logical reasoning are inherently difficult tasks for the human mind, an organ that evolved to perform a very different set of tasks under very different conditions from the ones we live in today.

“Logic takes care of itself; all we have to do is to look and see how it does it.” (Ludwig Wittgenstein)

Wittgenstein was probably the most influential philosopher of the 20th century, but his views changed dramatically over the course of his life, leading to some controversy as to what he actually thought. This quote is a good example. Early on, Wittgenstein believed that logical reasoning was autonomous — that logical truth was an objective truth, out there in the world for anyone to see if they knew how to look. Later on, though, Wittgenstein started to believe that culture and nature influence the way we see logic, and that logic is therefore not perfectly objective. It’s a tricky question, whether logical reasoning is universal or cultural — it must be tricky if a genius like Wittgenstein couldn’t make up his mind on it!

IV. The History and Importance of Logical Reasoning

Logic is a universal part of the human experience — agriculture would be impossible without inductive reasoning about weather and sunlight, and construction would be impossible without mathematics and deductive reasoning about what makes a structure sturdy.

Formalized logic has appeared in several places with more or less similar results. The Greek philosopher Aristotle is credited with being the first to develop a formal system of logical reasoning, but there were already people in India and China working on formal logic long before Aristotle was born. The Indian, Chinese, and Greek systems were all remarkably similar in their rules, which suggests that there may have been some mutual influence despite the distance. Traders and travelling scholars may have brought ideas about logical reasoning with them all over the world, allowing for rapid development of new ideas.

Logic may seem like a stuffy, abstract discipline used only by philosophers and lawyers, but it has had a profound influence on the history of science and technology as well. Alan Turing, the inventor of the modern computer, was a logician rather than a tinkerer or engineer, and his famous “Turing Machine” was a product of his rigorous training in formal logical reasoning.

V. Logical reasoning in Popular Culture

“Vulcanians do not speculate. I speak from pure logic.” (Spock, Star Trek )

Mr. Spock was raised on Vulcan and trained to be perfectly rational, ignoring all emotion and concentrating on logical reasoning instead. This represents a widespread trope in popular culture — that logic and the emotions are at odds with each other (the head pulling one way and the heart pulling in another). But there’s no reason why logic and the emotions have to be enemies. Uncontrolled emotion certainly clouds logical reasoning — it’s difficult to think rationally if you’re in a rage, for example — but many traditions argue that logic and the emotions should be partners rather than rivals, each providing its own sort of insight in harmony with the other.

On Sherlock , the great detective Sherlock Holmes has a website called “The Art of Deduction,” in which he explains his methods for solving crimes. However, the website has the wrong name — nearly all of Sherlock’s inferences are inductive rather than deductive. That is, they bring together bits and pieces of evidence to develop a theory about what probably happened in a particular crime. They’re not based on the kind of logical certainty that we saw in section 1, but rather on reasoning about likelihoods and probabilities. It’s always logically possible that Sherlock could have it wrong, even though that rarely seems to happen.

a. Reduction and induction

b. Deduction and induction

c. Greek logic and Chinese logic

d. Formal logic and informal logic

d. All of the above

a. Deduction

b. Inference

c. Induction

b. Creativity

University of Cambridge

Study at Cambridge

About the university, research at cambridge.

  • Undergraduate courses
  • Events and open days
  • Fees and finance
  • Postgraduate courses
  • How to apply
  • Postgraduate events
  • Fees and funding
  • International students
  • Continuing education
  • Executive and professional education
  • Courses in education
  • How the University and Colleges work
  • Term dates and calendars
  • Visiting the University
  • Annual reports
  • Equality and diversity
  • A global university
  • Public engagement
  • Give to Cambridge
  • For Cambridge students
  • For our researchers
  • Business and enterprise
  • Colleges & departments
  • Email & phone search
  • Museums & collections
  • Build your skills
  • What skills can I develop?
  • Cambridge students
  • New students overview
  • Pre-arrival courses
  • Student registration overview
  • Information for New Students overview
  • Step-by-step guide for new students
  • Information for Continuing Students overview
  • Step-by-step guide for continuing students
  • Frequently Asked Questions overview
  • Who needs to register
  • When to register
  • Received registration in error/not received registration email
  • Problems creating an account
  • Problems logging in
  • Problems with screen display
  • Personal details changed/incorrectly displayed
  • Course details changed/incorrectly displayed
  • Accessing email and other services
  • Miscellaneous questions
  • Contact Form
  • Citizenship Correction Document Upload
  • First few weeks
  • Manage your student information overview
  • Student record overview
  • Camsis overview
  • Extended Self-Service (ESS)
  • Logging into CamSIS
  • What CamSIS can do for you
  • Personal information overview
  • Changing your name
  • Changing Colleges
  • Residing outside the University's precincts
  • Applying for person(s) to join you in Cambridge
  • Postgraduate students overview
  • Code of Practice for Master's students
  • Code of Practice for Research Students
  • Postgraduate student information
  • Requirements for research degrees
  • Terms of study
  • Your progress
  • Rules and legal compliance overview
  • Freedom of speech
  • Public gatherings
  • Disclosure and barring service overview
  • Cambridge life overview
  • Student unions
  • Extra-curricular activities overview
  • Registering societies
  • Military, air, and sea training
  • Food and accommodation
  • Transport overview
  • Bicycles and boats
  • Your course overview
  • Undergraduate study
  • Postgraduate study overview
  • Changes to your student status (postgraduates only) overview
  • Applying for a change in your student status (postgraduates only)
  • Changing your mode of study
  • Withdrawing from the University
  • Allowance/exemption of research terms
  • Withdrawal from Study
  • Reinstatement
  • Changing your course registration
  • Changing your department/faculty
  • Changing your supervisor
  • Exemption from the University composition fee
  • Confirmation of Study: Academic Verification Letters
  • Extending your submission date
  • Medical intermission (postgraduates)
  • Non-medical intermission (postgraduates)
  • Returning from medical intermission
  • Working away
  • Working while you study
  • Postgraduate by Research Exam Information
  • Research passports
  • Engagement and feedback
  • Student elections
  • Graduation and what next? overview
  • Degree Ceremonies overview
  • The ceremony
  • Academical dress
  • Photography
  • Degree ceremony dates
  • Eligibility
  • The Cambridge MA
  • Degree certificates and transcripts overview
  • Academic Transcripts
  • Degree Certificates
  • After Graduation
  • Verification of Cambridge degrees
  • After your examination
  • Exams overview
  • Undergraduate and Postgraduate Taught overview
  • All students timetable
  • Undergraduate exam information overview
  • Postgraduate examinations overview
  • Examination access arrangements overview
  • Research programmes
  • Taught programmes
  • Writing, submitting and examination overview
  • PhD, EdD, MSc, MLitt overview
  • Research Best Practice
  • Preparing to submit your thesis
  • Submitting your thesis
  • Word limits
  • The oral examination (viva)
  • After the viva (oral examination)
  • After the examination overview
  • Degree approval and conferment overview
  • Final thesis submission
  • Examination allowances for certain Postgraduate degrees (except PhD, MSc, MLitt and MPhil by thesis degrees)
  • Requesting a review of the results of an examination (postgraduate qualifications)
  • Higher degrees overview
  • Higher doctorates
  • Bachelor of divinity
  • PhD under Special Regulations
  • Faith-provision in University exams
  • Publication of Results
  • Exam Support
  • Postgraduate by Research
  • EAMC overview
  • Annual Reports of the EAMC
  • Dates of meetings
  • Frequently asked questions
  • Guidance notes and application forms
  • Resources overview
  • Build your skills overview
  • Skills Homepage
  • What skills can I develop? overview

Digital, technology use and technical skills

  • Entrepreneurship & Enterprise

Interpersonal, communication and social skills

Leadership & Management

  • Learning, thinking, and reasoning skills

Planning and organisation skills

Presentation, negotiation and influencing skills

  • Self-management skills
  • Writing, analytical and reporting skills
  • Development activities overview
  • Academic study
  • Community and Volunteering
  • Entrepreneurship
  • Professional Development
  • Societies & Committees
  • Theatre, Film & Arts
  • Research students
  • Fees and financial assistance overview
  • Financial assistance overview
  • General eligibility principles and guidance
  • Cambridge Bursary Scheme funding overview
  • What you could get
  • Scottish students
  • EU students
  • Clinical medics and vets
  • Independent students
  • Extra scholarships and awards
  • The Crane Fund
  • The Realise Fund
  • Undergraduate Financial Assistance Fund
  • Postgraduate Financial Assistance Fund
  • External Support 
  • Support from your Funding Sponsor
  • Guidance for Academic Supervisors and College Tutors
  • Fees overview
  • Funding overview
  • Mosley, Worts, and Frere Travel Funds
  • Support for UKRI Studentship Holders
  • Student loans overview
  • US loans overview
  • Application procedure
  • Entrance and Exit Counselling
  • Cost of attendance
  • What type of loan and how much you can borrow
  • Interest rates for federal student loans
  • Proof of funding for visa purposes
  • Disbursement
  • Satisfactory academic progress policy
  • In-School Deferment Forms
  • Leave of absence
  • Withdrawing and return to Title IV policy
  • Rights and Responsibilities as a Borrower
  • Managing Repayment
  • Consumer information
  • Submitting a thesis — information for PhD students
  • Private loans
  • Veteran affairs benefits
  • Frequently Asked Questions
  • Student support
  • Development activities

learning_thinking_reasoning.png

what critical thinking skill is based on logic and reason

Learning, thinking, and reasoning skills support us to complete a wide range of activities and represent a range of other skills, such as critical thinking, evaluation, problem solving, processing information and creative thinking.  These skills allow us to think more deeply about a problem, break it down into parts and use our own research to discover solutions. They also allow us to think differently about information, how to ask questions and express our opinions. They allow us to solve problems more effectively, dig deeper into information and reach well-informed conclusions. We will use these skills heavily in our study, but they can also be applied to questions about our own surroundings and topics concerning our future. 

To learn more about your skills in this category, you can evaluate your skills through the ‘Skills Discovery’ tool , via your CRSID. 

Skills included in this area

  • Ability to learn
  • Ability to reflect
  • Achievement orientation
  • Active learning and learning strategies
  • Adopting a different perspective
  • Agile thinking
  • Analytical thinking
  • Applying appropriate learning strategies
  • Asking the right questions
  • Computational and algorithmic thinking
  • Creativity and imagination
  • Critical thinking
  • Deductive reasoning
  • Emotional intelligence
  • Entrepreneurial thinking
  • Evaluation of arguments
  • Environmental awareness
  • Fluency of ideas
  • Foreign language
  • Grit and persistence
  • Information seeking
  • Interpretation
  • Learning to learn
  • Logical reasoning
  • Originality
  • Reasoning, problem solving and ideation
  • Recognition of assumptions
  • Seeking relevant information
  • Structured problem solving
  • Synthesizing messages
  • Transferring knowledge to different contexts
  • Understanding biases

Ideas to develop skills in this area

Access the CamGuides which offer an outline of academic skills, including more information on skills in this section, such as Critical Reading and self-directed learning. You can access these for undergraduates, masters and PhD level study .  

You will practice learning, thinking and reasoning skills through industry projects, as part of your degree or through consulting projects across the university  

Administrative activities, such as making module choices, encourages you to think reflectively and strategically  

Taking part in academic supervisions will help you to deepen your thinking, reflect and share ideas with others 

Consider the various ways in which you engage with learning, such as through lectures, seminars, classes, field trips and practical sessions – reflect on how each of these environments changes your learning experience  

If you are undertaking lab work or any type of research involving the management of data, use of human or animal materials or confidential information you will need to manage ethical considerations 

Learning or developing a new language via The Language Centre   

Applying theory 

Testing procedures 

Taking part in debate or discussion on academic, political or social issues within debate groups, academic research groups or relevant clubs & societies 

Take part in the various consultancy projects that happen around Cambridge, such as iTeams , Cambridge Consulting Network , 180 Degrees Consulting , Bridges for Enterprise , CamStart and activities at Cambridge Zero – just to name a few.  

Use the Reflective Practice tool kit from the library to help you think reflectively about experiences and processes  

Access the ‘Self-reflection toolkit’ from the Careers Service, to enable you to think critically about your experiences and motivations 

Read through the academic study section to find out how to stretch and challenge your academic skills 

Think about using professional development activities to take academic skills into a professional/employment context 

Roles in societies & committees can support a more holistic approach to skills development, such as improving ‘emotional intelligence’, ‘ability to reflect’ ‘understanding biases’ and ‘recognition of assumptions’ 

Access the ‘ Thinking Creatively’ series from LinkedIn Learning 

Roles in societies & committees can support a more holistic approach to skills development, such as improving ‘emotional intelligence’, ‘ability to reflect’ ‘understanding biases’ and recognition of assumptions’ 

Other skills categories to explore

Entrepreneurship & Enterprise  

Self-management skills   

Writing, analytical and reporting skills 

Skill 

Definition  

Ability to learn 

The ability to acquire new knowledge and skills by engaging in both formal educational programmes and informal learning opportunities. 

Ability to reflect 

The ability to engage in introspection, evaluate personal strengths and weaknesses, and seek feedback from others. 

Achievement orientation 

The ability to concentrate on achieving one's goals and developing or modifying plans to achieve them. 

Active learning and learning strategies 

The ability to utilise new knowledge and skills to meet present and future requirements, while choosing appropriate training methods to match the specific situation or goal. 

Adopting a different perspective 

The ability to consider a situation, idea, or problem from a new or alternative point of view. 

Agile thinking 

The ability to understand, react and adapt quickly and effectively to changing circumstances. 

Analytical thinking 

The ability to systematically gather and analyse data and then utilise that information to support decision-making and problem-solving. 

Applying appropriate learning strategies 

The ability to identify the most efficient learning strategy (e.g., visual, multisensory, collaborative learning, etc.) to acquire and retain new skills or knowledge. 

Asking the right questions 

The ability to ask insightful, relevant, and purposeful questions to obtain information, clarify a point, or explore difficulties other people may have. 

Computational and algorithmic thinking 

The ability to analyse real-world problems by breaking them into smaller and logical steps and creating models that are easily executable by a computer. 

Creativity and imagination 

The ability to generate ideas, products, or ways of working that are original, new, and valuable. 

Critical thinking 

The ability to systematically and rationally evaluate information and situation to form an impartial judgement or option. 

Debate 

The ability to analyse, justify, and articulate comprehensive arguments during a discussion with others while demonstrating respectable manners and engaging in a polite disagreement. 

Deductive Reasoning 

The ability to use general and universal statements or facts to form a conclusion. 

Emotional intelligence 

The ability to have awareness over and to control one's emotions and their expression in order to handle interpersonal relationships thoughtfully and empathetically. 

Entrepreneurial thinking 

The ability to be self-motivated, innovative, and capable of developing a compelling vision while being aware of potential future risks and challenges. 

Environmental awareness 

The ability to understand the interdependence between humans and nature and recognise the impact of human activity on the planet.  

Evaluation of arguments 

The ability to critically assess the validity, coherence, and persuasiveness of presented claims and reasonings, based on supporting evidence. 

Fluency of ideas 

The ability to brainstorm or quickly generate a large number of ideas, concepts, or possibilities within a topic or a context. 

Foreign language 

The ability to learn and communicate in a foreign language through speaking, writing, listening, and reading.  

Grit and persistence 

The ability to pursue a long-term task, mission, or journey in spite of obstacles and discouragements. 

Inference 

The ability to make a guess or form an opinion on the basis of available information. 

Information seeking 

The ability to identify missing information and assess the most efficient place or resources where to look for answers. 

Initiative 

The ability to take a lead in a project or offer a fresh approach to something. 

Interpretation 

The ability to uncover and determine, or attribute, significance or meaning to various information or situations. 

Learning to learn 

The capacity to take personal responsibility for one's own learning; the ability to pursue and persist in learning, to organise one's own learning 

Logical reasoning 

The ability to draw conclusions, make judgements, and accept or reject certain information based on logical evaluation of facts and arguments. 

Numeracy 

The ability to understand, reason with, and apply simple mathematical concepts in everyday life. 

Originality 

The ability to independently generate new or fresh ideas, methods or thoughts. 

Reasoning, problem solving and ideation 

The ability to identify a problem and its causes and find opportunities or means of solving it. 

Recognition of assumptions 

The ability to recognise beliefs or assumptions which may not be necessarily true. 

Research 

The ability to conduct a systematic and detailed study to discover (new) information or (new) understanding of a subject. 

Seeking relevant information 

The ability to identify missing and relevant information and the most effective resource or medium where to find it. 

Structured problem solving 

The ability to solve complex problems by breaking them into parts, identifying the root causes of each issue, and applying analytical techniques to find solutions. 

Synthesizing messages 

The ability to communicate a complex or large amount of information and data simply and insightfully. 

Transferring knowledge to different contexts 

The ability to apply experience and skills from one area into other contexts to create ideas, understand new topics, or solve a problem. 

Understanding biases 

The ability to recognise when pre-existing patterns affect one's thinking process or judgement, often in an unconscious or unfair way. 

© 2024 University of Cambridge

  • Contact the University
  • Accessibility
  • Freedom of information
  • Privacy policy and cookies
  • Statement on Modern Slavery
  • Terms and conditions
  • University A-Z
  • Undergraduate
  • Postgraduate
  • Research news
  • About research at Cambridge
  • Spotlight on...
  • Open access
  • Published: 13 September 2024

Application of AI-empowered scenario-based simulation teaching mode in cardiovascular disease education

  • Koulong Zheng 1 , 2   na1 ,
  • Zhiyu Shen 1   na1 ,
  • Zanhao Chen 1   na1 ,
  • Chang Che 1   na1 &
  • Huixia Zhu 1  

BMC Medical Education volume  24 , Article number:  1003 ( 2024 ) Cite this article

Metrics details

Cardiovascular diseases present a significant challenge in clinical practice due to their sudden onset and rapid progression. The management of these conditions necessitates cardiologists to possess strong clinical reasoning and individual competencies. The internship phase is crucial for medical students to transition from theory to practical application, with an emphasis on developing clinical thinking and skills. Despite the critical need for education on cardiovascular diseases, there is a noticeable gap in research regarding the utilization of artificial intelligence in clinical simulation teaching.

This study aims to evaluate the effect and influence of AI-empowered scenario-based simulation teaching mode in the teaching of cardiovascular diseases.

The study utilized a quasi-experimental research design and mixed-methods. The control group comprised 32 students using traditional teaching mode, while the experimental group included 34 students who were instructed on cardiovascular diseases using the AI-empowered scenario-based simulation teaching mode. Data collection included post-class tests, “Mini-CEX” assessments, Clinical critical thinking scale from both groups, and satisfaction surveys from experimental group. Qualitative data were gathered through semi-structured interviews.

Research shows that compared with traditional teaching models, AI-empowered scenario-based simulation teaching mode significantly improve students’ performance in many aspects. The theoretical knowledge scores( P  < 0.001), clinical operation skills( P  = 0.0416) and clinical critical thinking abilities of students( P  < 0.001) in the experimental group were significantly improved. The satisfaction survey showed that students in the experimental group were more satisfied with the teaching scene( P  = 0.008), Individual participation( P  = 0.006) and teaching content( P  = 0.009). There is no significant difference in course discussion, group cooperation and teaching style of teachers( P  > 0.05). Additionally, the qualitative data from the interviews highlighted three themes: (1) Positive new learning experience, (2) Improved clinical critical thinking skills, and (3) Valuable suggestions and concerns for further improvement.

The AI-empowered scenario simulation teaching Mode plays an important role in the improvement of clinical thinking and skills of medical undergraduates. This study believes that the AI-empowered scenario simulation teaching mode is an effective and feasible teaching model, which is worthy of promotion in other courses.

Peer Review reports

Introduction

Cardiovascular diseases, including myocardial infarction and arrhythmia, frequently manifest abruptly and progress rapidly, placing individuals in critical situations. In addition to the physical distress, the substantial rates of disability and mortality linked to these conditions impose a significant burden on both families and society. Furthermore, the presence of commodities such as diabetes and chronic obstructive pulmonary disease in many cardiovascular disease patients adds further complexity to treatment strategies [ 1 , 2 ]. In light of this context, the importance of internship training in cardiology is underscored [ 3 ]. In China, when medical students enter their fourth and fifth years of undergraduate study, they will be placed in hospitals for a clinical internship lasting one to two years. Internship plays a critical role in the development of medical students, facilitating the transition from theoretical knowledge to practical application and fostering the growth of clinical reasoning and skills [ 4 ]. Nevertheless, the prevailing mode of internship education primarily relies on conventional instructional approaches, which prioritize teacher-led dissemination of knowledge through lectures and demonstrations [ 5 , 6 ]. Although these methods are successful in facilitating knowledge acquisition, they are inadequate in motivating students, promoting clinical reasoning, and cultivating the skills necessary to manage emergency situations, particularly when dealing with critically ill patients. As a result, it is essential to implement a shift in teaching methodologies, specifically within the realm of cardiology internship training.

In recent years, the rapid development of Artificial Intelligence (AI) technology has led to the emergence of various products profoundly impacting various aspects of people’s lives [ 7 ]. Generative AI, a type of AI based on deep learning, involves training large-scale language models to generate new text, images, or other types of data. Notably, models like OpenAI’s ChatGPT use deep learning algorithms trained on extensive datasets to generate human-like responses in conversation. In the realm of education, generative AI exhibits tremendous potential. Firstly, it can offer personalized learning experiences by tailoring learning paths based on individual student needs and proficiency levels, enhancing learning effectiveness and making education more targeted and efficient [ 8 , 9 ]. Secondly, generative AI plays a crucial role in automatic assessment and feedback, providing students with immediate and constructive feedback, promoting better understanding and mastery of knowledge. Additionally, through simulated dialogues, role-playing, and other mode, generative AI can help students improve communication and problem-solving skills, offering new possibilities for flexible, intelligent teaching mode and driving innovation and progress in education [ 10 ].

Scenario-based simulation teaching is an instructional method that involves simulating real-world situations for teaching purposes, commonly used in clinical education. In this approach, students are placed in virtual or real scenarios where they face specific problems, challenges, or tasks, engaging in practical activities and decision-making to proficiently apply knowledge [ 11 ]. This teaching method emphasizes practicality and interactivity, allowing students not only to apply theoretical knowledge in simulated situations but also to actively participate in discussions, collaborate on problem-solving, and enhance their practical application and teamwork skills [ 12 ]. Research indicates that scenario-based simulation teaching stimulates student interest, increases motivation, and fosters critical thinking and innovation by integrating theoretical knowledge into practice [ 13 ].

Nowadays, with the rapid development of science, new technologies such as Virtual Reality and Augmented Reality have brought significant changes to clinical medicine. For example, clinical scenario simulation surgery allows doctors to create a virtual surgical training platform. This allows them to practice complex surgical skills in a safe, repeatable practice environment [ 14 , 15 , 16 , 17 ]. While studies have demonstrated the effectiveness of scenario-based simulation teaching in clinical courses [ 11 , 12 , 13 , 18 ], there is currently no research on the application of generative AI in simulating clinical scenarios related to cardiovascular diseases. In this study, we aim to investigate the effectiveness of the AI-empowered scenario-based simulation teaching mode in cardiovascular disease education. Our goal is to explore the impact of this innovative teaching model on clinical interns, focusing on their basic knowledge, clinical operation ability and clinical critical thinking ability.

Experimental design

A combination of quasi-experimental research design and descriptive qualitative research methods was employed to form both a control group and an experimental group. Our study integrated Kolb’s experiential learning model into the experimental group’s teaching methods to enhance the learning process [ 19 , 20 ]. Kolb’s experiential learning model involves providing learners with real or simulated situations and activities. Under the guidance of teachers, learners participate in these activities to gain personal experience. They then reflect on and summarize their observations, developing theories or conclusions, which are ultimately applied in practice (Fig.  1 ).

figure 1

Kolb’s experiential learning model

Study participants

A total of 66 first-year students from two classes in the clinical major at Nantong University were selected as the study participants. Inclusion criteria comprised: (1) absence of current physical or mental abnormalities; (2) full-time undergraduate students in medical majors; (3) no prior experience using the AI platform for medical course learning before the experiment; (4) voluntary participation in the study with the signing of an informed consent form. The control group consisted of 32 students, following a traditional teaching model, while the experimental group comprised 34 students undergoing scenario-based simulation teaching mode empowered by AI.

All students entered university directly through the national college entrance examination (gaokao) after completing 12 years of education. After inclusion, an assessment of the characteristics of the two student groups, including age, gender in pre-professional courses, revealed comparable learning abilities between the two groups ( P  > 0.05). Both groups received instruction in internal medicine. The students in both groups used the ninth edition of the textbook “Internal Medicine,” edited by Ge Junbo and others and published by People’s Medical Publishing House, and were taught by the same instructor.

Teaching interventions

Teaching mode of control group.

The control group adopted the traditional teaching model, and the course arrangement was divided into two parts: theoretical classes and practical classes. In weekly theoretical classes, teachers use PPT to impart knowledge according to the teaching objectives and syllabus. The contents of these theoretical courses include basic knowledge of cardiovascular diseases, pathophysiology, diagnostic methods and treatment principles. Teachers help students understand complex medical concepts through detailed explanations and illustrations, and answer students’ questions in class to ensure they master the necessary theoretical knowledge.

In the practical class, the teacher led the students to conduct practical training based on the teaching content of the previous theoretical class. Practical classes were usually conducted in simulated wards or clinical skills laboratories. Teachers first demonstrated the operations on a standardized patient(SP), including specific operating steps such as cardiac examination, auscultation, and electrocardiogram interpretation. Teachers explained in detail the key points and precautions of each operation link, and demonstrated on-site how to communicate with patients to improve students’ clinical operation skills and doctor-patient communication abilities.

After the demonstration, students were divided into groups for operational exercises, with teachers guiding them, correcting mistakes in a timely manner and providing feedback. In this way, students not only consolidated theoretical knowledge, but also enhanced practical operational abilities and developed clinical thinking and decision-making abilities. In addition, practical courses also emphasized teamwork and communication skills. Students simulated real clinical environments through group discussions and role-playing to improve their overall quality and professional abilities.

Formation of teaching research team

The team of this study was composed of 2 chief physicians, 3 attending physicians, 2 resident physicians, 5 teaching assistants, and 4 graduate students. This team consisted of teachers with more than five years of teaching experience. Before the lectures, they all underwent training in scenario simulation teaching mode and were proficient in using ChatGPT.

Implementation plan for educational reform

The teaching model of the experimental group innovatively incorporated generative artificial intelligence technology, providing students with a brand new scene simulation teaching experience. In this teaching model, teachers first provided an in-depth explanation of theoretical knowledge to ensure that students could master the core points of the course, such as the characteristics of different types of arrhythmias in electrocardiograms. These points are the basis for understanding the complexity of cardiovascular disease and are the knowledge that students must skillfully apply in subsequent simulation practices.

Students then watched a video simulating scenarios related to cardiovascular disease. These videos not only vividly reproduced clinical scenes, but also contained rich medical information and situational challenges, which greatly stimulated students’ interest in learning and enthusiasm for participation. While watching the video, students were encouraged to play the role of doctors and use the theoretical knowledge they had learned to conduct detailed analysis and inferences on the signs, symptoms, and pathogenesis shown in the video.

Students needed to use critical thinking to identify the occurrence and development of the disease from the patient’s clinical manifestations and, at the same time, master the key points of diagnosis and the basic principles of treatment. This process not only exercises the students’ clinical thinking skills but also deepens their understanding of the disease diagnosis and treatment process.

After the scenario simulation, students participated in group discussions to share their observations and analyses, complementing each other and improving their understanding of the disease. This interactive learning method promoted the exchange of knowledge and the collision of ideas, helped students examine problems from different angles, and improved their problem-solving abilities.

Finally, students would complete thinking questions related to the course content, consolidate the knowledge they have learned, and test the learning effect. Students could ask ChatGPT questions at any time, and when they had more questions, they could get help from their teachers. Except for learning theoretical knowledge, all clinical practice processes were consistent with those of the control group.

Establishment of experimental group

Reasonable grouping is an important prerequisite for team learning. To enhance group learning and achieve optimal learning outcomes, each group had a maximum of 6 students. Therefore, before class, teachers determined the groups based on students’ average GPAs to ensure that each group had similar overall learning abilities. Eventually, the students in the experimental group were divided into 6 groups. Based on feedback from teachers on student performance, adjustments to group members were made in the first week. In each group, one student was selected as the group leader, responsible for organizing group activities. Clear division of team roles ensured the participation of each member and promoted cooperation within the group.

Preparation of scenario simulation videos

Writing scenario simulation scripts.

The cardiovascular teaching research group wrote script stories based on teaching objectives and typical cardiovascular cases, enriching the background and character features of the plot to make it as close to real clinical situations as possible.

Breaking down script scenes

In the production of clinical case scenario simulation videos, the breakdown script played a crucial role, providing guidance and basis for AI drawing for each scene. By inputting the case directly into ChatGPT and instructing, “How many scenes can this script be broken down into for animation video creation?” ChatGPT would then offer a breakdown of scenes as an example, subject to review by the teachers for alignment with educational goals and accuracy.

Animation drawing

By inputting the prompt “I need you to act as the Midjourney command optimization master, generating scene descriptions for the above scenes separately, I want Midjourney to draw them, please provide concise descriptions in both Chinese and English,” specific instructions would be obtained. This prompt asks ChatGPT to generate a concise description for each scenario. These descriptions should include necessary details to help Midjourney draw the scene accurately. Each scene description was reviewed, and then each English description was input into Midjourney to generate animation materials. These materials were imported into editing software to complete the production of video content, with subtitles automatically generated and added to the video.

Question bank compilation

In the process of compiling a question bank for cardiovascular teaching, ChatGPT generates questions based on the plot content of the script when prompted with the instruction, “This is a case in cardiovascular teaching, what questions can be given to students?” ChatGPT would write questions based on the relevant plot content of the script. The teacher could continue to instruct to change the format and description of the questions and could also request answers and scoring criteria for the corresponding questions.

Synthesis of scenario simulation teaching videos and classroom teaching

The assessment of question and answer accuracy and scientific validity, the adjustment of question difficulty in alignment with teaching objectives, and the precise placement of questions within the video were carried out to finalize the production of cardiovascular scenario simulation teaching videos. Subsequently, these videos were integrated into the class app for classroom instruction. Feedback from both students and teachers was solicited to enhance the content and quality of the scenario simulation teaching videos(Fig.  2 ).

figure 2

Flow chart of research on teaching reform programmes

Data collection

Post-class test.

Students in both the experimental group and the control group took the post-class test, and the test content and grading criteria were exactly the same. The theoretical knowledge level and practical operational ability were each scored out of 100 points, with higher scores indicating more vital student abilities. The theoretical knowledge assessment used exam questions prepared by the teaching team, while practical operational ability used a “Mini-CEX” scoring sheet customized for cardiovascular medicine. The Mini-CEX evaluation form was adapted by the teaching and research team from a scale for assessing clinical skills written by John J Norcini et al. [ 21 ]. It is designed according to the characteristics of cardiovascular medicine. It mainly evaluates clinical history recording, electrocardiogram interpretation, humanistic care, Clinical diagnosis, communication skills and overall competency. There were five parts in total; each part had four questions, and each question adopted Likert’s five-point scoring system. The Cronbach’s alpha of the scale was 0.90, and the Cronbach’s alpha of each dimension was 0.753–0.772.

Clinical critical thinking scale

Based on Robert Ennis’s critical thinking framework and related theories, relevant questions were adapted according to the experimental purpose and subjects [ 22 ]. The final clinical critical thinking scale consisted of four dimensions, including logical reasoning, central argument, argumentation evidence and organizational structure, with a total of 5 questions in each dimension and 5 points in each question, for a total of 100 points.

Overall teaching satisfaction survey

The teaching and research team developed a teaching satisfaction questionnaire. Students completed the Teaching Satisfaction questionnaire on the WJX.cn at the end of the final exam. The questionnaire included six aspects: teaching scene satisfaction (Q1  ∼  Q4), course discussion satisfaction (Q5  ∼  Q8), group cooperation satisfaction (Q9  ∼  Q11), individual participation (Q12  ∼  Q14), teaching content satisfaction (Q15  ∼  Q18), and teaching teacher satisfaction (Q19  ∼  Q20). Each question was set on a scale of 1 to 5 (strongly disagree to strongly agree on five scales). Final satisfaction (%) is score/total score (100 points) *100%. After analyzing the preliminary collected data, Cronbach’s alpha coefficient was 0.85, indicating high internal consistency and reliability.

Qualitative assessment - semi-structured interviews

At the end of the course, we conducted a semi-structured interview to survey students in the experimental group and teachers on their evaluation of the use of AI in teaching cardiovascular disease. In selecting interviewees, we considered the gender and age and then conducted purposive sampling among the experimental group to ensure a diversity of opinions.

In order to fully understand the teaching effect and the real experience of teachers and students with the application of AI teaching mode, the research team first conducted preliminary interviews with two students and determined the final outline of the interview: (1) How do you feel about the learning of this teaching mode? (2) Do you think your learning/teaching style has changed since before? (3) What are your suggestions for the future development of this teaching mode?

A researcher who was well-versed in interviewing techniques was assigned to conduct the interviews independently. The interviews were conducted during the week following the course in a quiet and relaxing session to avoid errors as much as possible. Based on their final test results, they were divided into three grades, with three boys and three girls randomly selected from six groups from three different levels. Each interview lasted approximately 20 min. The students’ conversations were recorded using a voice recorder, and the research team pledged to keep them confidential. Recordings of the interviews were transcribed verbatim within 24 h of the end of the conversation.

Data analysis

Data entry and analysis were performed using Rstudio software (version 4.3.1). The following R packages were utilized: “stats”, “car”, “doBy”, and “ggplot2”.

For quantitative data, independent sample t-tests were employed to analyze differences between groups. For qualitative data, the chi-square test was utilized. A significance level of P  < 0.05 was considered statistically significant, indicating differences between groups.

Baseline comparison between two groups

The experimental group consisted of 34 students aged 22–24 years (mean age 23.03 ± 0.626). The Control group comprised 32 students from clinical professional classes, with ages ranging from 21 to 25 years (mean age 23.14 ± 0.976). Before the class, we assessed the basic clinical knowledge of the two groups of students, and the results showed that there was no significant difference in the demographic characteristics of the two groups ( P  > 0.05), and we found that there was no significant difference between them, which was comparable (Table  1 ).

Final scores between two groups

Statistical analysis of examination scores for two groups revealed that students in the experimental group had an average score of 83.26 on the theoretical final exam, whereas students in the control group had an average score of 79.56. The scores of the control group were significantly lower than those of the experimental group ( p  < 0.05). Regarding Mini-CEX examination scores, students within the experimental group attained an average score of 76.24, which was notably greater than the average score of 70.19 achieved by students in the control group ( p  < 0.001). Furthermore, the clinical critical thinking proficiency of the experimental group surpassed that of the control group, as indicated by statistical significance ( p  < 0.001) (Table  2 ).

Satisfaction survey

After investigation and recovery, a total of 66 students completed the satisfaction questionnaire, and 66 valid questionnaires were recovered, with a total completion rate of 100%. As shown in the questionnaire results (Table  3 ), it can be seen that the overall satisfaction of experimental group in teaching scene, individual participation and teaching content is higher than that of control group, and the difference between the two groups is statistically significant ( P  < 0.05). There were no significant differences in other aspects ( P  > 0.05).

Qualitative data analysis

In summarizing the interview findings, three primary themes emerge for analysis: (1) A new learning (teaching) experience; (2) Enhancement of clinical critical thinking ability; (3) Suggestions for improvement.

Theme 1: a new learning (teaching) experience

“In the past, we have always learned knowledge from books. Some things are very complicated and not easy to understand. With the help of AI, I think a lot of complicated knowledge has suddenly become simple and clear.”(S1).

“It is a very unimaginable experience. Through the scenario simulation course, I can intuitively see the physiological changes of the heart and blood vessels, and many theoretical knowledge are easier to understand.”(S2).

“The scenario simulation course enables us to visually see the electrophysiology and pathophysiological changes of the heart and blood vessels. Seeing the complete process makes it easier to remember and understand.”(S3).

“I’ve seen a lot of animations during the learning process, and through this method, I have a better understanding of clinical analysis and judgment.”(S4).

“I think the course preparation process is very easy, with the help of ChatGPT, many educational resources can be found quickly, and I am even more incredible that it can produce a complete clinical simulation video! I believe I will be able to perform better in the field of clinical teaching in the future!”(T1).

Theme 2: enhancement of clinical critical thinking ability

Leveraging AI in medical and educational fields, students can utilize AI interactive platforms to simulate disease processes, enhancing their understanding of cardiovascular diseases and developing critical thinking and problem-solving skills.(S1).

“With AI assistance, my knowledge becomes more systematic and detailed. For example, when learning about acute myocardial infarction, I saw numerous relevant images such as anatomical slices of coronary arteries, their distribution, and corresponding myocardial perfusion areas, which enhances our analytical and judgment abilities.”(S2).

“During leisure time, I can use AI interactive platforms for learning and engage in question-and-answer conversations with AI, which makes self-directed learning more effective and motivating.”(S5).

“I could see the students’ progress in their learning from the exercise tests at the end of the lesson and the final Mini-CEX exam. Through the communication and discussion with them after the lesson, I found that they became more logical in their thinking about the problems, and their ability to analyse the conditions during the Mini-CEX exam was greatly improved.”(T2).

Theme 3: concerns for improvement

Regarding the application of AI in cardiovascular medicine education, students and teachers actively provided some suggestions.

“This teaching format and content are vivid and illustrative. However, I feel that some content, when interacting with AI, cannot answer my questions well.”(S3).

“With this mode of teaching, I feel that I have a higher level of mastery of this course than any other subject and am more interested and motivated to learn. I have been very willing to use ChatGPT in other courses to assist me in my studies, but I felt slightly uncomfortable communicating with the AI as opposed to the teacher.”(S4).

“This way of preparing teaching materials and the mode of lectures is indeed very innovative, with the help of ChatGPT, my pre-course preparation process will be relatively easier, and the use of it in the classroom has also greatly improved the motivation of students. However, I am concerned that the drawbacks of AI, such as academic honesty and accuracy of answers, will also have an impact on the final teaching results, so we teachers should be cautious about AI.”(T2).

With the rapid development of technology and AI, the form of medical education is undergoing continuous changes [ 23 , 24 ]. Traditional teaching mode, characterized by inefficiency and dull content, no longer meet the needs of modern medical education. This is particularly evident in the teaching of cardiovascular system diseases [ 25 ], where the content is complex and difficult to remember, often leading to a lack of student engagement and understanding during clinical practice, thereby impacting the cultivation of clinical thinking skills [ 26 ]. Currently, AI is widely applied across various fields, and research shows that it plays a crucial role in education [ 27 , 28 ], including personalized learning, intelligent tutoring, instructional design, and student assessment, greatly enhancing learning outcomes and promoting educational innovation. Moreover, studies have also shown the widespread promotion and application of scenario-based teaching models in clinical practice teaching [ 29 , 30 , 31 ].

In this study, the scenario-based teaching model is implemented based on ChatGPT 3.5. We believe that the scenario-based teaching model based on generative AI is an important mode and development direction for educational practice reform. ChatGPT, with its outstanding adaptability, versatility, efficiency, intelligence, and comprehensive coverage, has become a favored choice for many developers and is widely used in the education sector [ 32 , 33 ]. Through clever integration with the scenario-based teaching model, a new teaching experience is created.

For teachers, ChatGPT provides powerful support, significantly improving lesson preparation efficiency. Teachers can use ChatGPT’s intelligently generated dialogue scenarios to present abstract and difficult-to-understand concepts in vivid and interesting scenarios, making it easier for students to understand and remember. Additionally, teachers can adjust the generated dialogues according to students’ learning situations, personalize teaching, and improve teaching effectiveness. For students, in the scenario-based teaching model, they feel as if they are in a vivid teaching theater. They take on detective roles, cultivating clinical thinking and case analysis skills as they solve problems. ChatGPT’s intelligent dialogue can also customize learning plans based on students’ learning styles and progress, improve memory efficiency through mnemonic devices, and stimulate their interest in learning and self-directed learning motivation.

The findings of the study indicate that students enrolled in AI-assisted teaching programs exhibit higher scores in theoretical knowledge, Mini-CEX examination performance, and clinical critical thinking skills compared to their counterparts in traditional teaching settings. These results suggest that a hybrid teaching approach may enhance students’ comprehension of knowledge and proficiency in clinical procedures, this is consistent with the findings of Yujiwang et al [ 34 , 35 , 36 , 37 ]. The possible reason is that in the interaction of scenario simulation, students can independently explore the process of illness and take the initiative to find and solve problems. According to Kolb’s experiential learning model [ 19 , 20 ], experience to reflection to abstract concepts to practice, and finally to experience, interlocking and progressive, prompting students to understand knowledge from scenario simulation, then apply it to practice, and then find problems, which not only improves their independent learning ability, but also improves their critical thinking ability. Additionally, student interviews revealed that the new teaching method facilitates their exploration and identification of clinical issues, thereby preparing them effectively for future clinical practice.

Through an analysis of students’ teaching satisfaction questionnaires, it was found that the experimental group exhibited significantly higher levels of satisfaction in teaching scene, individual participation, and teaching content compared to the control group. These results suggest that the mixed teaching mode utilizing the AI platform may be more feasible and suitable for practical teaching in cardiovascular internal medicine. Although we found no statistically significant differences in course discussion, teamwork, and instructor teaching style, this may be due to the following reasons. First, the small sample size and short duration of this study limited the power to detect significant differences. Future research could improve this by increasing the sample size and extending the duration of the study. In addition, traditional teaching methods are already relatively mature in these aspects, and student satisfaction in these three aspects is already at a high level, and may not show significant advantages in the short term. At the same time, teaching satisfaction is affected by many factors, and a single change is not enough to significantly improve overall satisfaction. Therefore, we will continue to optimize the new AI-powered teaching model and strengthen its integration with course discussions and teamwork. We look forward to seeing more significant effects in future research.

Moreover, students say that the teaching method of scenario simulation not only helps them systematically understand and master the content of the course, but also stimulates their interest in independent learning and improves their ability to discover and solve problems. The vast majority of students hold a positive attitude towards the AI empowered scenario-based simulation teaching mode, and some students also put forward their own views on this teaching mode, mainly focusing on the accuracy and understanding of AI. This also provides us with valuable suggestions for the improvement of further study.

This study also has the following limitations: (1) The number of participants in the survey is relatively small, resulting in insufficient data and interview views collected; (2) In this study, we used version 3.5 of generative AI ChatGPT. However, it is worth noting that a more advanced version 4.0 of ChatGPT is already available on the market. Therefore, the version we use does not fully represent the highest computing power of AI technology.

In comparison to the conventional teaching methodology, the novel teaching mode demonstrates clear benefits. Findings from examinations, assessments, satisfaction surveys, and interviews suggest that this innovative teaching method offers a more efficient means for interns to gain contemporary professional knowledge and enhance their clinical practice proficiency. Additionally, the cultivation of clinical critical thinking and problem-solving skills through this approach is expected to greatly support their long-term career viability. The utilization of an AI-empowered scenario-based simulation teaching mode has the potential to enhance students’ engagement and motivation, as well as improve their problem-solving skills in clinical settings. Consequently, the implementation and dissemination of our AI-empowered scenario-based simulation teaching mode in cardiovascular medicine practice teaching is recommended.

Data availability

Our research encompasses sensitive personal identity information of students. Due to the potential risk of breaching individual privacy, the datasets analyzed in this study cannot be made publicly accessible. We emphasize that the data remains confidential and is not open to the public. However, if you have a compelling need for access, please reach out to the corresponding author at [email protected] to request the data.

Kose E, An T, Kikkawa A, Matsumoto Y, Hayashi H. Analysis of factors affecting rehospitalization of patients with chronic kidney disease after educational hospitalization. Clin Pharmacol. 2014;6:71–8.

Google Scholar  

Pena X, Guijarro C. COPD and cardiovascular disease: more than just a co-incidence. Rev Clin Esp (Barc). 2020;220(5):290–1.

Torabi A, Khemka A, Bateman PV. A cardiology handbook app to improve medical education for internal medicine residents: development and usability study. JMIR Med Educ. 2020;6(1):e14983.

Article   Google Scholar  

Locke R, Mason A, Coles C, Lusznat RM, Masding MG. The development of clinical thinking in trainee physicians: the educator perspective. BMC Med Educ. 2020;20(1):226.

Pimdee P, Ridhikerd A, Moto S, Siripongdee S, Bengthong S. How social media and peer learning influence student-teacher self-directed learning in an online world under the ‘New normal’. Heliyon. 2023;9(3):e13769.

Liu CX, Ouyang WW, Wang XW, Chen D, Jiang ZL. Comparing hybrid problem-based and lecture learning (PBL + LBL) with LBL pedagogy on clinical curriculum learning for medical students in China: a meta-analysis of randomized controlled trials. Med (Baltim). 2020;99(16):e19687.

Chen M, Zhang B, Cai Z, Seery S, Gonzalez MJ, Ali NM, Ren R, Qiao Y, Xue P, Jiang Y. Acceptance of clinical artificial intelligence among physicians and medical students: a systematic review with cross-sectional survey. Front Med (Lausanne). 2022;9:990604.

Yu H. The application and challenges of ChatGPT in educational transformation: new demands for teachers’ roles. Heliyon. 2024;10(2):e24289.

Stamer T, Steinhäuser J, Flägel K. Artificial intelligence supporting the training of communication skills in the education of health care professions: scoping review. J Med Internet Res. 2023;25:e43311.

Knopp MI, Warm EJ, Weber D, Kelleher M, Kinnear B, Schumacher DJ, Santen SA, Mendonça E, Turner L. AI-enabled medical education: threads of change, promising futures, and risky realities across four potential future worlds. JMIR Med Educ. 2023;9:e50373.

Huang CY, Wang YH. Toward an integrative nursing curriculum: combining team-based and problem-based learning with emergency-care scenario simulation. Int J Environ Res Public Health. 2020;17(12):4612.

Sun L, Yang L, Wang X, Zhu J, Zhang X. Hot topics and frontier evolution in college flipped classrooms based on mapping knowledge domains. Front Public Health. 2022;10:950106.

Tseng LP, Hou TH, Huang LP, Ou YK. The effect of nursing internships on the effectiveness of implementing information technology teaching. Front Public Health. 2022;10:893199.

Tyler R, Danilova G, Kruse S, Pierce A. Innovations through virtual reality simulation. Mo Med. 2021;118(5):422–5.

Plotzky C, Lindwedel U, Sorber M, Loessl B, König P, Kunze C, et al. Virtual reality simulations in nurse education: a systematic mapping review. Nurse Educ Today. 2021;101:104868.

Harper HE, Hirt PA, Lev-Tov H. The use of virtual reality in non-burn dermatological care - a review of the literature. J Dermatolog Treat. 2022;33(1):48–53.

Sutherland J, Belec J, Sheikh A, Chepelev L, Althobaity W, Chow BJW, et al. Applying modern virtual and augmented reality technologies to medical images and models. J Digit Imaging. 2019;32(1):38–53.

Du YL, Ma CH, Liao YF, Wang L, Zhang Y, Niu G. Is clinical scenario simulation teaching effective in cultivating the competency of nursing students to recognize and assess the risk of pressure ulcers? Risk Manag Healthc Policy. 2021;14:2887–96.

Figueiredo LDF, Silva NCD, Prado MLD. Primary care nurses’ learning styles in the light of David Kolb. Rev Bras Enferm. 2022;75(6):e20210986. Published 2022 Sep 9.

Wijnen-Meijer M, Brandhuber T, Schneider A, Berberat PO. Implementing Kolb´s experiential learning cycle by linking real experience, case-based discussion and simulation. J Med Educ Curric Dev. 2022;9:23821205221091511. Published 2022 May 12.

Norcini JJ, Blank LL, Duffy FD, Fortna GS. The mini-CEX: a method for assessing clinical skills. Ann Intern Med. 2003;138(6):476–81.

Ennis RH. Critical thinking. Upper Saddle River, NJ: Prentice Hall; 1996.

Masters K. Artificial intelligence in medical education. Med Teach. 2019;41(9):976–80.

Liu J, Wang C, Liu S. Utility of ChatGPT in clinical practice. J Med Internet Res. 2023;25:e48568.

Brown DW, MacRae CA, Gardner TJ. The future of cardiovascular education and training. Circulation. 2016;133(25):2734–42.

Richards JB, Hayes MM, Schwartzstein RM. Teaching clinical reasoning and critical thinking: from cognitive theory to practical application. Chest. 2020;158(4):1617–28.

Keskinbora K, Güven F. Artificial intelligence and ophthalmology. Turk J Ophthalmol. 2020;50(1):37–43.

Nensa F, Demircioglu A, Rischpler C. Artificial intelligence in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):29S-37S.

Lin YP, Liu CH, Chen YT, Li US. Scenario- and discussion-based approach for teaching preclinical medical students the socio-philosophical aspects of psychiatry. Philos Ethics Humanit Med. 2023;18(1):15.

Cannon-Bowers JA. Recent advances in scenario-based training for medical education. Curr Opin Anaesthesiol. 2008;21(6):784–9.

Sultana N, Betran AP, Khan KS, Sobhy S. Simulation-based teaching and models for caesarean sections: a systematic review to evaluate the tools for the ‘See one, practice many, do one’ slogan. Curr Opin Obstet Gynecol. 2020;32(5):305–15.

Dave T, Athaluri SA, Singh S. ChatGPT in medicine: an overview of its applications, advantages, limitations, future prospects, and ethical considerations. Front Artif Intell. 2023;6:1169595.

Lee H. The rise of ChatGPT: exploring its potential in medical education. Anat Sci Educ. 2023 Mar 14.

Wang Y, Peng Y, Huang Y. The effect of typical case discussion and scenario simulation on the critical thinking of midwifery students: evidence from China. BMC Med Educ. 2024;24:340.

Holdsworth C, Skinner EH, Delany CM. Using simulation pedagogy to teach clinical education skills: a randomized trial. Physiother Theory Pract. 2016;32(4):284–95.

Lapkin S, Fernandez R, Levett-Jones T, Bellchambers H. The effectiveness of using human patient simulation manikins in the teaching of clinical reasoning skills to undergraduate nursing students: a systematic review. JBI Libr Syst Rev. 2010;8(16):661–94.

Demirören M, Turan S, Öztuna D. Medical students’ self-efficacy in problem-based learning and its relationship with self-regulated learning. Med Educ Online. 2016;21:30049.

Download references

Acknowledgements

Not applicable.

Innovation and Entrepreneurship Training Program for College Students in Jiangsu Province (202313993027Y). Teaching Reform Research Project of Nantong University (2023B10).

Author information

Koulong Zheng, Zhiyu Shen and Zanhao Chen contributed equally to this work.

Authors and Affiliations

Nantong University, Qi Xiu Road, Nantong, Jiangsu, 226007, China

Koulong Zheng, Zhiyu Shen, Zanhao Chen, Chang Che & Huixia Zhu

The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu, 226001, China

Koulong Zheng

You can also search for this author in PubMed   Google Scholar

Contributions

KLZ and HXZ designed the trial. KLZ prepared the clinical cases. HXZ collected the data. HXZ and ZYS analyzed the data. HXZ, ZHC and CC wrote the manuscript. All authors have read and approved the final manuscript.

Corresponding author

Correspondence to Huixia Zhu .

Ethics declarations

Ethics approval and consent to participate.

This study has obtained ethical approval from the Ethics Committee of the Second Affiliated Hospital of Nantong University. All methods were conducted in accordance with relevant guidelines and regulations(approval number 2024KT045). All participation was voluntary and signed informed consent forms were obtained from each participant.

Consent for publication

Competing interests.

The authors declare no competing interests.

Additional information

Publisher’s note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ .

Reprints and permissions

About this article

Cite this article.

Zheng, K., Shen, Z., Chen, Z. et al. Application of AI-empowered scenario-based simulation teaching mode in cardiovascular disease education. BMC Med Educ 24 , 1003 (2024). https://doi.org/10.1186/s12909-024-05977-z

Download citation

Received : 15 February 2024

Accepted : 02 September 2024

Published : 13 September 2024

DOI : https://doi.org/10.1186/s12909-024-05977-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Artificial intelligence
  • Cardiovascular diseases
  • Educational measurement
  • Medical education

BMC Medical Education

ISSN: 1472-6920

what critical thinking skill is based on logic and reason

COMMENTS

  1. 1: Introduction to Critical Thinking, Reasoning, and Logic

    29580. Noah Levin. Golden West College NGE Far Press. What is thinking? It may seem strange to begin a logic textbook with this question. 'Thinking' is perhaps the most intimate and personal thing that people do.

  2. Critical Thinking

    Critical Thinking is the process of using and assessing reasons to evaluate statements, assumptions, and arguments in ordinary situations. The goal of this process is to help us have good beliefs, where "good" means that our beliefs meet certain goals of thought, such as truth, usefulness, or rationality. Critical thinking is widely ...

  3. 3 Core Critical Thinking Skills Every Thinker Should Have

    Critically thinking about critical thinking skills. ... is through practicing syllogistic reasoning ... gathering" of credible, relevant and logical evidence based on the previous analysis and ...

  4. 1 Introduction to Critical Thinking

    Critical thinking is the ability to think clearly and rationally about what to do or what to believe. It includes the ability to engage in reflective and independent thinking. Someone with critical thinking skills is able to do the following: Understand the logical connections between ideas. Identify, construct, and evaluate arguments.

  5. Critical Thinking and Decision-Making

    Simply put, critical thinking is the act of deliberately analyzing information so that you can make better judgements and decisions. It involves using things like logic, reasoning, and creativity, to draw conclusions and generally understand things better. This may sound like a pretty broad definition, and that's because critical thinking is a ...

  6. Critical Thinking

    Critical Thinking. Critical thinking is a widely accepted educational goal. Its definition is contested, but the competing definitions can be understood as differing conceptions of the same basic concept: careful thinking directed to a goal. Conceptions differ with respect to the scope of such thinking, the type of goal, the criteria and norms ...

  7. Critical Thinking

    Critical thinking involves rigorously and skilfully using information, experience, observation, and reasoning to guide your decisions, actions and beliefs. It's a useful skill in the workplace and in life. You'll need to be curious and creative to explore alternative possibilities, but rational to apply logic, and self-aware to identify when ...

  8. Introduction to Logic and Critical Thinking

    This is an introductory textbook in logic and critical thinking. The goal of the textbook is to provide the reader with a set of tools and skills that will enable them to identify and evaluate arguments. The book is intended for an introductory course that covers both formal and informal logic. As such, it is not a formal logic textbook, but is closer to what one would find marketed as a ...

  9. PHIL102: Introduction to Critical Thinking and Logic

    The course touches upon a wide range of reasoning skills, from verbal argument analysis to formal logic, visual and statistical reasoning, scientific methodology, and creative thinking. Mastering these skills will help you become a more perceptive reader and listener, a more persuasive writer and presenter, and a more effective researcher and ...

  10. Critical thinking

    Critical thinking, in educational theory, mode of cognition using deliberative reasoning and impartial scrutiny of information to arrive at a possible solution to a problem. From the perspective of educators, critical thinking encompasses both a set of logical skills that can be taught and a

  11. What Is Critical Thinking?

    Critical thinking is the ability to effectively analyze information and form a judgment. To think critically, you must be aware of your own biases and assumptions when encountering information, and apply consistent standards when evaluating sources. Critical thinking skills help you to: Identify credible sources. Evaluate and respond to arguments.

  12. Critical thinking

    Critical thinking is the analysis of available facts, evidence, observations, and arguments in order to form a judgement by the application of rational, skeptical, and unbiased analyses and evaluation. [1] In modern times, the use of the phrase critical thinking can be traced to John Dewey, who used the phrase reflective thinking. [2] The application of critical thinking includes self-directed ...

  13. Critical Thinking & Reasoning: Logic and the Role of Arguments

    We determine if their logic is sound or slightly flawed. In other words, we act on the messages before we take action based on them. When we enact critical thinking on a message, we engage a variety of skills including: listening, analysis, evaluation, inference and interpretation or explanation, and self-regulation [2]

  14. How to Develop Critical Thinking Skills in 7 Steps with ...

    By encouraging open dialogue and collaborative problem-solving, you create an environment that fosters the development of critical thinking skills in others. 7. Reflect and learn from the process. The seven-step critical thinking process yields a result—and you then need to put that solution into place.

  15. How to develop critical thinking skills

    Here are 12 tips for building stronger self-awareness and learning how to improve critical thinking: 1. Be cautious. There's nothing wrong with a little bit of skepticism. One of the core principles of critical thinking is asking questions and dissecting the available information.

  16. 7 Module 7: Thinking, Reasoning, and Problem-Solving

    Module 7: Thinking, Reasoning, and Problem-Solving. This module is about how a solid working knowledge of psychological principles can help you to think more effectively, so you can succeed in school and life. You might be inclined to believe that—because you have been thinking for as long as you can remember, because you are able to figure ...

  17. Logical Reasoning: Explanation and Examples

    III. Logical Reasoning vs. Critical Thinking. ... This is a crucial skill for critical thinking, since it allows you to broaden your perspective and reflect on your actions and beliefs. ... They're not based on the kind of logical certainty that we saw in section 1, but rather on reasoning about likelihoods and probabilities. ...

  18. 6 Main Types of Critical Thinking Skills (With Examples)

    Critical thinking skills examples. There are six main skills you can develop to successfully analyze facts and situations and come up with logical conclusions: 1. Analytical thinking. Being able to properly analyze information is the most important aspect of critical thinking. This implies gathering information and interpreting it, but also ...

  19. 1: How to Reason Logically

    1: How to Reason Logically. The goal of this book is to improve your logical-reasoning skills. These skills are also called "critical thinking skills." They are a complex weave of abilities that help you get someone's point, generate reasons for your own point, evaluate the reasons given by others, decide what or what not to do, decide what ...

  20. Think About it Quiz Flashcards

    Study with Quizlet and memorize flashcards containing terms like which critical thinking skill is used to gain new sight into your thinking? A. Information-gathering B. Curiosity C. Open mindedness D. Evaluation E. Reflection (right answer), which critical thinking skill is based on logic and reason? A. Information-gathering B. Curiosity C. Open mindedness D. Evaluation E. Reflection, Which ...

  21. Learning, thinking, and reasoning skills

    learning_thinking_reasoning.png Learning, thinking, and reasoning skills support us to complete a wide range of activities and represent a range of other skills, such as critical thinking, evaluation, problem solving, processing information and creative thinking. These skills allow us to think more deeply about a problem, break it down into parts and use our own research to

  22. Application of AI-empowered scenario-based simulation teaching mode in

    Clinical critical thinking scale. Based on Robert Ennis's critical thinking framework and related theories, relevant questions were adapted according to the experimental purpose and subjects . The final clinical critical thinking scale consisted of four dimensions, including logical reasoning, central argument, argumentation evidence and ...